首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 159 毫秒
1.
《特殊钢》2017,(4)
分析了硫合金化工艺和渣系等因素对GS35C-A钢(/%:0.32~0.39C,≤0.40Si,0.50~0.80Mn,≤0.045P,0.015~0.055S,≥0.020Al)浇铸性能的影响,并将原LF(硫合金化)-RH-钙处理工艺优化成LF-RH-钙处理-硫合金化工艺。结果表明,(1)采用先硫合金化后钙处理工艺生产时,水口结瘤物以CaS、CaO-Al_2O_3-CaS复合夹杂物为主;(2)采用先钙处理后硫合金化工艺生产时,连浇炉数由原来先硫合金化后钙处理工艺的2炉提高至6炉;(3)渣系优化后(R 5.66~9.55),RH喂硫线前显微夹杂物数量比优化前降低了84%,RH离站显微夹杂物数量由9.09个/mm~2降低至5.06个/mm~2。  相似文献   

2.
为减少钢中夹杂物和对夹杂物变性处理,防止连铸水口结瘤,对100 t LF 5炉SWRCH22A冷镦钢(/%:0.18~0.20C,0.44~0.62Si,0.85~0.89Mn,0.012~0.015P,0.006~0.009S,0~0.004Ca,0.000 7~0.0010B,0.011~0.088Als)夹杂物钙处理进行了Ca-Al,Al-O,Al-S,Ca-S平衡热力学计算和氧氮分析。得出1 873 K[Ca]-[Al],a[O]-[Al]和[S]-[Al]平衡曲线,1 823~1 923 K[Ca]-[S]平衡曲线,和5炉钢对应的实测值。通过分析,得出优化LF精炼工艺:(1)精炼终渣MgO=6%、SiO2<6%、CaO/Al2O3=1.6~1.8;(2)转炉下渣量700 kg左右,精炼终渣量2 000 kg左右;(3)根据精炼终渣CaO/Al2O3=1.6~1.8的目标来决定造渣料的加入量;(4)避免喂钙线时钢水剧烈翻腾,并防止精炼结束到中间包过程钢水的氧化  相似文献   

3.
在钙处理对夹杂物变性作用进行分析的基础上,结合钢厂生产X80管线钢(%:≤0.08C、≤1.85Mn、≤0.060Als)的工业性试验,利用冶金热力学原理,分析计算了Al2O3变性为低熔点钙铝酸盐所需钙含量的范围和避免单相CaS析出硫含量的范围,同时对≤0.002%S和0.025%~0.035%Al的RH处理钢水按出站[Ca]Tot=(40~50)×10-6计算喂Ca-Si线进行钙处理,并对中间包钢水和铸坯中的夹杂物进行了检测。结果表明,X80管线钢试验炉次平均[Ca]Tot为41×10-6,[S]为23×10-6,均在理论计算范围内;同时经钙处理后,钢中绝大部分夹杂物CaO-CaS-Al2O3复合夹杂,钙处理效果良好。  相似文献   

4.
《特殊钢》2016,(3)
为减少钢中夹杂物和对夹杂物变性处理,防止连铸水口结瘤,对100 t LF 5炉SWRCH22A冷镦钢(/%:0.18~0.20C,0.44~0.62Si,0.85~0.89Mn,0.012~0.015P,0.006~0.009S,0~0.004Ca,0.000 7~0.001 0B,0.011~0.088Als)夹杂物钙处理进行了Ca-Al,Al-O,Al-S,Ca-S平衡热力学计算和氧氮分析。得出1 873 K[Ca]-[Al],a_([0])-[Al]和[S]-[Al]平衡曲线,1 823~1 923 K[Ca]-[S]平衡曲线,和5炉钢对应的实测值。通过分析,得出优化LF精炼工艺:(1)精炼终渣MgO=6%、SiO_26%、CaO/Al_2O_3=1.6~1.8;(2)转炉下渣量700 kg左右,精炼终渣量2 000 kg左右;(3)根据精炼终渣CaO/Al_2O_3=1.6~1.8的目标来决定造渣料的加入量;(4)避免喂钙线时钢水剧烈翻腾,并防止精炼结束到中间包过程钢水的氧化。  相似文献   

5.
为研究LF-RH精炼工艺生产Q690钢时不同钙处理时机下夹杂物特征的变化,开展工业试验对RH精炼前后钙处理炉次取样进行定量分析对比。钙处理后夹杂物中CaO质量分数持续增加,CaS质量分数瞬态增加,夹杂物熔点降低。RH精炼前钙处理炉次中,RH精炼过程夹杂物的成分接近低熔点区,结束时夹杂物数量密度和面积分数分别为15个/mm2和0.01%。RH精炼后钙处理炉次中,RH精炼过程夹杂物依旧为高熔点Al2O3-MgO类型,结束时夹杂物数量密度和面积分数分别降至1个/mm2和0.002 5%。RH精炼前钙处理会使RH精炼过程夹杂物熔点以及夹杂物与钢液间的接触角降低,导致夹杂物去除驱动力降低,从而抑制夹杂物的去除。因此LF-RH精炼工艺生产铝脱氧钢时,为提高精炼过程钢中非金属夹杂物的去除效率,应在RH精炼后进行钙处理操作。  相似文献   

6.
SCM435钢的生产流程为80 t BOF-LF-RH-280 mm×325 mm坯连铸。LF终点精炼渣成分为(/%):45~55CaO,10~15SiO2,20~30Al2O3,∑(FeO+MnO)≤1%。分析了RH加钙(0.0013%Ca)和RH不加钙(0.0002%Ca)对Φ13 mm盘条中D和Ds夹杂物的影响。结果表明,RH不加钙处理工艺夹杂物最大尺寸为7.65μm,Ds≤0.5级合格率为100%;RH加钙处理工艺夹杂物最大尺寸为25.68μm,Ds≤0.5级合格率为95%。在数量控制方面,RH不加钙处理工艺夹杂物指数由RH加钙工艺的0.72降至0.68,D类≤1.0合格率由RH加钙工艺的30%提高至75%;RH不加钙处理工艺夹杂物主要为MgO·Al2O3,少量钙铝酸盐夹杂,RH加钙工艺为镁铝尖晶石、钙铝酸盐和CaS多相夹杂。因此,在脆性D类和Ds类夹杂物尺寸、数量和类型控制上,RH不加钙处理工艺改善效果明显  相似文献   

7.
为研究不同精炼工艺对齿圈钢42CrMoS4钢中硫化物的影响,从钢中硫化物的形态与分布着手,在精炼工序设计两种不同的碱度渣和钙含量工艺,试验生产4炉。对比分析铸坯和轧材中不同双层结构复合硫化物特征与硫化物形成机理。结果表明,LF造高碱度渣(R=6.5~7.2)进RH后不进行钙处理,铸坯1/4厚度位置复合硫化物整体成块状形貌,核心内部氧化物同样也成规则的块状,轧材内部氧化物主要以CaO为主,外围硫化物主要是高CaS比例的(Ca,Mn)S,基本不变形,A类细系夹杂物级别为2.0~3.0级;在LF造弱碱度渣(R=3.6~4.2)进RH后进行二次钙处理,将w[Ca]由0.001 4%左右提升至0.002 5%~0.003 2%,铸坯1/4厚度位置复合硫化物整体成椭球状形貌,核心内部氧化物同样也成规则的球状,轧材内部氧化物为较低CaO比例的钙镁铝酸盐,外围硫化物主要是低CaS比例的(Ca,Mn)S,硫化物成纺锤状,具有很好的变形能力,A类细系夹杂物级别控制在2.0级以内。  相似文献   

8.
王国承  黄浪 《特殊钢》2009,30(5):31-33
通过鱼雷罐铁水喷粉脱硫处理,转炉加低硫废钢、出钢挡渣和加Si-Fe、Mn-Fe脱氧,控制终点[C]0.026%~0.030%,RH脱气处理和加Mn-Fe合金化,LF高碱度渣精炼和喂Ca线冶炼管线钢(%:0.039~0.042C、1.56~1.62Mn、0.01Ti、0.05Nb、0.03V)。检验结果表明,生产管线钢铸坯中的硫含量为(10~18)×10-6,T[O]30×10-6,铸坯中大部分夹杂物尺寸≤40μm,主要夹杂物为钙铝酸盐,Al2O3夹杂和单独存在的MnS夹杂很少,有利于提高管线钢抗HIC(氢致开裂)性能。  相似文献   

9.
为了解钙处理对车轮钢洁净度的影响,对BOF-LF精炼-RH精炼-钙处理-CC工艺生产车轮钢系统取样,采用扫描电镜对试样中夹杂物的形貌、尺寸及组成进行了分析。研究表明,钙处理前夹杂物主要为Al_2O_3-CaO及少量的Mg O和Si O2,尺寸在5μm以内,钙处理后夹杂物主要为Al_2O_3-CaO-Ca S,在板卷中呈不连续簇条状,部分尺寸为10μm以上;RH-中间包-热轧过程1~5μm夹杂数量密度呈降低趋势,由10降至3.1个/mm2,5~10μm夹杂数量密度控制在1个/mm2以内,10μm以上夹杂数量密度控制在0.2个/mm2以内;铸坯w(T[O])控制在0.001 0%以内;对夹杂物进行面扫,板卷中主要夹杂物为Ca S-CaO-Al_2O_3夹杂以及CaO-Al_2O_3-Mg O;对夹杂物轧制过程变形分析得出,轧制过程变形的长条状夹杂成分为CaO-Al_2O_3,而未变形的夹杂成分CaO-Al_2O_3外包裹Ca S。  相似文献   

10.
高级别船板钢生产过程中夹杂物的演变规律   总被引:1,自引:1,他引:0  
周宇涛  杨树峰  李京社  梁雪 《钢铁》2019,54(1):33-42
 通过采用扫描电镜对船板钢F40中的夹杂物进行全流程系统分析,研究了冶炼过程中夹杂物的形成和演变规律,并采用夹杂物的弹性模量概念对其在轧制过程中的变形机理进行解释。结果表明,LF出站后钢中的主要夹杂物为MgO-Al2O3复合夹杂,在钙处理后夹杂物逐渐向低熔点的CaO-Al2O3-MgO-CaS系夹杂转变。在轧制过程中,高弹性模量的夹杂物,在轧制中相对塑性变形低。热力学计算表明,当船板钢中的w([Als])为0.02%~0.04%时,为使夹杂物改性完全,钙处理后钢液中的w([Ca])应控制在0.001 8%~0.002 8%。为避免钙处理后生成CaS,可通过控制w([S])在0.002 1%以内,减小其对浇注过程和钢性能的不利影响。  相似文献   

11.
X80管线钢LF-RH二次精炼过程夹杂物行为及控制   总被引:1,自引:0,他引:1  
研究了210 t BOF-LF-RH-CC工艺流程生产X80管线钢(%:0.041~0.044C、0.15Si、1.78~1.80Mn、0.007~0.010P、0.000 8~0.001 2S、0.039~0.047[Al]s)时精炼过程中夹杂物的变化。在BOF出钢阶段采用加Al强脱氧(0.01%~0.02%[Al]s),LF精炼过程采用高碱度、强还原性精炼渣(精炼渣成分%:50~58CaO、7~10MgO、20~25Al2O3、4~7SiO2、0.5~1.4TFe),炉渣和钢液反应活跃,使得钢中Al2O3夹杂物很快向液态钙铝酸盐和部分液态CaO-MgO-Al2O3复合夹杂物转变。液态夹杂物通过碰撞、聚合、长大及上浮去除,提高了钢液的洁净度。浇铸前T[O]降到(7~10)×10-6,钢中夹杂物尺寸在3~5μm,试验炉次的热轧板内未发现大尺寸的低熔点钙铝酸盐类长条夹杂物。  相似文献   

12.
基于IF钢(/%:≤0.0025C,≤0.005Si,0.01~0.12Mn,≤0.020P,≤0.010S,0.02~0.04Als,0.03~0.05Ti)冶炼过程工艺数据的统计,分析了Ar站钢水氧含量和RH脱碳期加铝量对钢中T[O]的影响,以及合金加入时机,顶渣改质处理和连铸保护浇铸对钢水洁净度的影响。研究结果表明,适当提高转炉终点氧含量和温度、延长加铝和钛铁之间的时间间隔、顶渣改质处理、连铸保护浇铸等方法可有效提高钢水洁净度。生产结果得出,通过RH进站钢水温度平均提高2.4℃,通过控制转炉下渣量,使顶渣厚度由≥80 mm降至60~75 mm,使RH脱碳过程加铝炉次由原36%降至3%,通过顶渣改质,使(FeO+MnO)由原22%降至17%,连浇炉数由8炉提高到10炉,连铸中间包T[O]由37.4×10-6降低至21.6×10-6,钢水洁净度得到了显著提高。  相似文献   

13.
研究了铁水脱硫预处理-80 t顶底复吹转炉-LF-RH-280 mm×325 mm方坯连铸流程生产XGM6钢(/%:0.012C, ≤0.012Si, ≤0.08Mn,  ≤0.015P, ≤0.010S)等超低碳铝镇静钢时水口堵塞的原因和防止措施。通过控制转炉终点[O]≤600×10-6, LF顶渣为高铝渣+电石,RH-OB脱碳后加铝粒脱氧,控制RH终点氧含量20×10-6~30×10-6, RH终点[Al]s≤0.009%,中间包钢水过热度25~40℃,[Al]s≤0.004%等工艺措施,基本避免超低碳铝镇静钢水口堵塞,连浇炉数由不足2炉提高到8炉以上。  相似文献   

14.
含钛焊丝钢GF50-G(/%:0.08C,0.83Si,1.55Mn,0.014P,0.012S,0.19Ti)生产流程为80 t顶底复吹转炉-LF-160 mm×160mm方坯连铸,在浇注过程中经常出现水口结瘤现象。扫描电镜和能谱仪对水口结瘤物的分析得出,结瘤物主要物相为TiO2。水口结瘤的热力学计算表明,为避免钛脱氧产物被[Al]还原形成铝钛系夹杂物,应控制[Als]在0.008%以下。根据生产实践,将中间包钢水温度从1542℃提高至1 550℃控制[Alt]≤0.010%、加钛铁前使[O]≤15×10-6、减少钢水的二次氧化能够防止水口结瘤、连浇炉次从3~4炉提高到8~10炉。  相似文献   

15.
杨建  黄治成 《特殊钢》2022,43(2):59-63
对 120t BOF-LF-RH-CC 流程生产的低碳低硅-铝镇静钢 C4C-Q(/%:0.02~0.06C,≤0.06Si,0.02~0.05Al)冶炼硅含量高,可浇性差的原因进行了分析.通过工艺优化,转炉采用出钢两次挡渣模式和出钢后脱碳工艺,降低出钢氧含量,减少后期脱氧过程中生成Al2O3夹杂;通过优化LF脱氧模式...  相似文献   

16.
对“120 t BOF-LF-RH-CC”流程GCrl5轴承钢的洁净度研究结果表明,LF精炼结束以A12O3 • MgO尖 晶石和Al2O3-MgO-CaO夹杂为主,RH真空处理后, Al2O3- MgO尖晶石几乎全部消失,钢中夹杂物以液态钙铝酸盐为主,T.0含量降至5.3x10-6;浇注过程中间包重新成Al2O3- MgO尖晶石;RH终点和中间包钢水以及连铸坯未发现≥20um钙铝酸盐夹杂。  相似文献   

17.
两炉次无取向硅钢XG800WR(/%:0.003~0.004C、0.71~0.75Si、0.32~0.33Mn、0.004~0.007S、0.016P)的炼钢流程为铁水预处理(KR)-210 t顶底复吹转炉-钢包吹氩-RH脱碳精炼-230 mm×1220 mm板坯连铸。53 t中间包钢水过热度为25~30℃,钢包到中间包采用长水口全程吹氩保护浇铸,中间包至结晶器采用浸入式水口浇铸。结果表明,在RH、中间包、结晶器过程中钢中总氧以及夹杂物数量和尺寸均明显降低;但在钢包到中间包过程T[O]、[N]和钢中夹杂物数量增加,说明长水口浇铸过程存在二次氧化。连铸坯中T[O]、[N]平均他分别为11×10-6和30×10-6,显微夹杂物数量平均为4个/mm~2。铸坯中的显微夹杂物主要为3~5 μm的AIN,同时存在少量的MnS、Al2O3·AIN和Al2O3·MgO·MnS。  相似文献   

18.
0.88%Si无取向硅钢的生产工艺为100 t BOF出钢时加300kg石灰,终点[C]0.035%~0.05%,出钢温度1640~1650℃,RH吹氧脱碳,加99.0%Al-Fe合金6.69 kg/t,加70%Si-Fe合金15.70 kg/t,70 mm板坯连铸过程全程保护浇铸,使用镁质碱性中间包覆盖剂。分析结果表明,RH终点[O]28×10-6,铸坯[O]22×10-6,RH-前[N]为16×10-6,RH过程增氮4×10-6,RH结束到铸坯增氮6×10-6;RH脱碳终点时钢中夹杂物以球形MnO·Al2O3为主;RH出站时以不规则形状的Al2O3为主,并伴有少量单独存在的CaS夹杂;中间包钢液内的夹杂物主要以不规则形状的Al2O3为主;铸坯中多为不规则形状的Al2O3以及少量AlN,还有少量由结晶器卷渣引起的含Na成分的复合夹杂物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号