首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
这是一篇矿物加工工程领域的论文。采用超细粉磨技术处理磷矿,可改变磷矿中含磷矿物的物理化学性质,从而提高磷矿中磷的溶解与释放,使其可作为磷肥使用。搅拌磨机作为超细粉磨设备,用其处理磷矿的可行性与工艺参数对磨矿效果影响的研究尚不完善。本文采用立式搅拌磨机对河北某磷矿进行湿法磨矿实验,粉磨产品的粒度分布通过NKT6100-D型激光粒度仪进行检测,探究磨矿工艺参数对产品粒度组成以及新生成粒级含量的影响,并通过R-R方程将产品粒度参数化分析,确定较适宜的工艺参数。结果表明,在搅拌器转速550 r/min、磨矿浓度65%、充填率60%、料球比0.5和磨矿时间30 min的条件下,获得有效磷含量和枸溶率分别为8.75%和74.03%,颗粒特征参数b为0.371、均匀性系数n为1.426的粉磨产品,可见用搅拌磨机对磷矿进行超细粉磨处理是可行的。  相似文献   

2.
针对峨口铁矿一段磨矿产品粒度组成分布均匀性差以及磨矿工艺指标低的问题,结合峨口铁矿矿石力学性质和一段磨矿磨机给矿粒度组成分布,经计算,推荐介质配比方案为m(Φ100):m(Φ80):m(Φ60):m(Φ40)=30∶35∶15∶20。采用推荐介质配比方案与现厂方案以及偏大、偏小介质方案进行磨矿对比试验,结果表明,推荐介质配比方案磨矿产品中+0.15mm粒级产率较现厂方案低6.79个百分点,-0.074mm粒级产率较现厂方案高4.86个百分点,-0.074mm磨机利用效率较现厂方案分别提高2.63、3.99个百分点,推荐介质配比方案可有效提高磨矿作业工艺指标。  相似文献   

3.
超细搅拌磨机制备亚微米造纸涂布重钙颜料的研究   总被引:5,自引:1,他引:4  
用超细搅拌磨机制备了d95≤2 μm、d50≤0.7 μm粒度分布均匀的亚微米超细重钙颜料。通过条件实验,系统地研究了浆料浓度、搅拌器转速、助磨分散剂、研磨介质种类及尺寸等主要操作参数对搅拌磨机粉磨效果的影响规律。在9 L超细搅拌磨机中, 得到的最佳磨矿工艺为: 装球量8 kg、给料量2.5 kg、介质球为Φ3 mm刚玉球、助磨分散剂为聚丙烯酸钠、添加量均为0.9%、磨机转速250 r/min、磨矿浓度72%和磨矿时间为120 min。  相似文献   

4.
黑沟铁矿石粉矿(-15 mm)铁品位为37.35%,铁主要以赤褐铁矿形式存在,铁在赤褐铁矿中分布率为85.35%。现场采用球磨机磨矿后强磁选工艺回收粉矿,球磨机磨矿时泥化现象严重,细粒级铁矿物无法通过强磁选有效回收。为减轻粉矿磨矿过程的过粉碎现象,优化磨矿产品粒度组成,对破碎至-2 mm的粉矿,预选筛分出产率为33.30%的-120μm粒级,对+120μm粒级进行棒磨机磨矿试验。在棒径分别为18、20、22 mm的钢棒为磨矿介质,且其质量比为4∶3∶3、介质充填率为30%、料棒比为1.0、磨矿浓度为70%、磨矿时间为62 s条件下闭路磨矿,合格粒级(38~120μm)占-120μm粒级比例达57.55%。降低分级粒度能够有效减少微细粒级的产生,减少过磨。采用棒磨工艺可以减少过磨,优化磨矿产品的粒度组成。  相似文献   

5.
介绍了用球径半理论公式计算磨机内球荷尺寸组成来改善磨矿产品粒度组成,提高磨矿产品粒度均匀性的方法。以某铜矿为研究对象,根据待磨矿石的矿岩力学性质以及磨机的相关参数,用球径半理论公式精确计算出磨机的球荷组成,即m(Ф70)∶m(Ф60)∶m(Ф40)∶m(Ф30)=20∶30∶20∶30。试验结果表明:采用推荐球荷的磨矿产品细度和粒度分布的均匀性明显提高,其中磨矿细度(-0.074 mm)、中间可选粒级(-0.02+0.01 mm)、易选粒级(-0.074+0.01 mm)的含量分别增加了5.49、1.67、3.51个百分点,磨矿技术效率提高3.29个百分点。球径半理论公式考虑因素较为全面,改善磨矿效果作用明显,具有较强的适用性。  相似文献   

6.
史达  刘杰  侯鹏程  韩跃新 《中国矿业》2021,30(7):140-145
鞍千选矿厂现有流程磨矿产品存在粗细分布不均匀、再磨效率低、能耗高、磨矿效果差等问题,影响后续分选过程,导致精矿指标差。针对以上问题,为改善预选精矿磨矿效果,提升最终精矿指标,有必要采用更适于细磨的立式搅拌磨机,对搅拌磨机各项参数进行系统的研究。本文在鞍千预选精矿工艺矿物学分析的基础上,进行了搅拌磨磨矿—弱磁分选工艺流程试验。试验结果表明:预选精矿TFe品位为39.62%,主要以磁铁矿形式存在,粗细粒级分布不均。通过对陶瓷球搅拌磨工艺参数的优化试验研究,确定了搅拌磨最佳工艺参数:介质充填率为100%,搅拌器转速1000 r/min,料球比0.7,介质尺寸6 mm,磨矿浓度50%,磨矿时间2.80 min,磨矿产品经过一段弱磁选,可以获得品位67.01%,回收率89.93%的精矿指标。该工艺流程简单,指标良好,可为选矿厂工艺流程改造提供参考。  相似文献   

7.
龙渊  张国旺  肖骁  赵湘 《矿冶工程》2019,39(5):63-64
采用立式搅拌磨机对焙烧云母进行了剥片磨矿研究。介质球种类对比研究结果表明,特制的聚氨酯球作为磨矿介质对云母片料的剥片磨矿效果较好,产品粒度分布窄。采用聚氨酯球作介质球,进行了介质球配比、磨机转速、磨矿浓度等优化研究,结果表明,在Φ8 mm、Φ10 mm和Φ12 mm球配比为2∶5∶1,磨机转速240 r/min,磨矿浓度55%时,磨矿产品中0.020~0.045 mm粒级含量最多,符合剥片要求。研究成果对工业生产具有良好的指导意义。  相似文献   

8.
搅拌磨是一种高效、节能的细磨和超细粉磨设备,与卧式球磨机相比,具有磨矿效率高、工艺简单、产品粒度细且分布均匀、能耗低等优点,在选矿领域得到了广泛应用。介绍了搅拌磨机的工作原理,分析了不同磨机型式及其各自的作用特点和应用情况,总结了国内外搅拌磨机的研发现状,系统阐述了搅拌磨机在金属矿山选矿领域的应用现状。搅拌磨机可有效提高磨矿效率和目的矿物单体解离度,降低生产成本,提高经济效益。  相似文献   

9.
详细介绍了国内外矿用搅拌磨机的结构特点及应用,综述了矿山细磨设备的研究情况,评述了搅拌磨机的发展和应用前景.超细搅拌磨机具有能量密度高、细磨效率高、产品粒度分布均匀和选择性磨矿等特点,其推广应用将有效促进矿山金属资源的综合利用和节能降耗.  相似文献   

10.
由于梅山铁矿磨矿产品过粉碎现象严重,为了提高磨矿产品均匀性,选取梅山球磨4系列1段球磨给矿产品,在不同的磨矿时间、磨矿浓度、磨机转速率和钢球大小的条件下进行了磨矿效果试验。试验结果表明:合适的磨矿时间为3~4 min、磨矿浓度为70%~75%、磨机转速率为60%~76%。合理优化1段磨矿工艺参数后,与选厂2段分级溢流产品相比较,分选后铁精矿产率提高了4.93个百分点,全铁回收率提高了5.74个百分点,尾矿的产率降低了0.78个百分点,全铁损失产率降低了2.36个百分点,硫产率降低了6.25个百分点,尾矿产品-10μm粒级产率降低了16.24个百分点,中间粒级含量明显提高,不仅改善了磨矿产品均匀性,而且提高了后续分选指标。  相似文献   

11.
针对某选矿厂细碎机破碎能力有较大富余,球磨机给矿粒度偏粗的问题,通过降低筛板筛孔尺寸,分别在生产筛板(筛孔尺寸14 mm×20 mm)与试验筛板(筛孔尺寸10 mm×40 mm)条件下对细碎筛分作业、球磨分级作业进行流程考察研究。结果表明:采用试验筛板后,细筛分级产品中-12.0 mm含量由88.09%(F95=15.20 mm)提升至98.71%(F95=10.31 mm);当一段球磨处理量分别为295 t/h、310 t/h、和325 t/h时,二段分级溢流中-0.074 mm粒级含量分别由79.86%增加到86.86%、77.03%增加到87.68%,75.63%增加到84.45%。更换筛板后,细碎筛分产品和二段分级溢流产品的粒度均明显变细。破碎筛分流程的优化充分发挥了破碎机的破碎能力,降低了球磨机的给矿粒度。  相似文献   

12.
鞍钢东鞍山烧结厂原矿主要以细粒嵌布的赤铁矿和磁铁矿为主,为解决现场球磨机效率低、有用矿物单体解离度低等问题,进行了陶瓷球搅拌磨、球磨工艺的优化和对比试验。试验结果表明,搅拌磨适宜条件为充填率80%、料球比0.9、磨矿质量浓度60%、介质尺寸6 mm、搅拌器转速650 r/min;球磨适宜条件为介质质量配比为m(32 mm):m(25 mm):m(19 mm)为5:3:2、充填率40%、料球比1.0、磨矿质量浓度70%。此时搅拌磨机磨矿效果更好,-0.038 mm比生产率达3 636.20 kg/(m3·h),磨矿效率达71.93 kg/(kW·h)。相同细度样品分析表明,搅拌磨产品中过细和过粗粒级含量均相对较少,有用矿物单体解离度比球磨高4.5%~8%。反浮选试验表明,搅拌磨可将精矿铁品位和回收率分别提高0.94和2.99个百分点。因此,搅拌磨机比球磨机具有更好的磨矿效果和浮选指标。   相似文献   

13.
以齐大山铁矿细碎矿石为对象,考察其高压辊磨机粉碎产品的磨矿特性和单体解离特性,并与实验室颚式破碎机粉碎产品进行比较,结果表明:当目标粒度分别为0.074和0.280 mm时,辊压产品的邦德球磨功指数分别比颚破产品的降低13.96%和28.23%;在-0.074 mm占80%磨矿细度下,-3.2和3.2~0.074 mm辊压产品与对应颚破产品的相对可磨度分别为0.83和0.86;辊压产品与颚破产品相比,-0.5 mm粒级中铁矿物的单体解离度高15.16个百分点,不同磨矿细度下的磨矿产物中铁矿物的单体解离度高5.55~0.98个百分点;辊压产品磨矿产物中的连生体属于二次磨矿时易于解离的连生体,而颚破产品磨矿产物中的连生体属于二次磨矿时难以完全解离的连生体。  相似文献   

14.
宜昌某高岭土矿高岭土含量虽达95%左右,但-2μm粒级产率仅占30%,且有10%的叠片状未剥离高岭土,层间的着色有机杂质直接煅烧难以高效脱色。为获得高品质高岭土熟料,对试样进行了剥片工艺条件研究,并对剥片前后的高岭土进行了SEM分析和熟料白度研究。结果表明,在磨矿前一次性加入与试样质量比为3%的分散剂六偏磷酸钠,搅拌磨中刚玉质中球(=1.2 mm)与小球(=0.8 mm)的体积比为0.8∶1.5,介质充填率为70%,磨矿浓度为70%,剥片转速为800 r/min,磨矿时间为180 min情况下,剥片产品-2μm粒级产率为96.62%,普遍为表面平滑、颗粒均匀的高岭土单片;剥片前后高岭土熟料的白度分别为76.84%和82.08%,剥片使熟料的白度提高了5.24个百分点。剥片后高岭土的粒度和熟料的白度均达到高档填料的质量要求。  相似文献   

15.
破碎方式对邦铺钼铜矿石可磨性及钼浮选的影响   总被引:3,自引:0,他引:3  
分别采用高压辊磨工艺和传统破碎工艺将西藏墨竹工卡县邦铺钼铜矿石破碎到-3.2 mm,分析了两种破碎产品的粒度特性,测定了两种破碎方式下矿石的 Bond球磨功指数,考察了两种破碎方式对后续球磨-钼浮选的影响。结果表明:高压辊磨产品比传统破碎产品细粒级含量多且粒度分布更均匀;高压辊磨产品在不同目标粒度下的Bond 球磨功指数比传统破碎产品至少降低9.05%;高压辊磨产品和传统破碎产品浮选钼的最佳磨矿细度分别为-0.074 mm占65%和75%,相应地,前者的Bond球磨功指数比后者降低10.87%,但浮钼回收率减少2.32个百分点。  相似文献   

16.
采用立式搅拌磨机作为微细粒级矿物的再磨设备,以秦皇岛地区微细粒级铁矿为试验样品,进行了磨矿及磁选条件试验研究,结果表明,磨矿产品粒度达到-0.038mm占95.43%,经一次粗选和两次精选可以获得产率66.12%、磁性铁品位为64.06%、回收率为97.16%,全铁品位为65.94%的优质铁精粉。磨机磨矿电耗测试表明,当磨矿产品粒度达-0.038mm约占95.00%时,磨矿电耗为15.20kW·h/t。该试验表明,秦皇岛地区的铁矿可以通过细磨解离获得好的选矿指标,立式搅拌磨机是一种高效的细磨设备。   相似文献   

17.
建立基于研磨过程机理的煤粉超细研磨动力学模型可以预测超细磨出料的粒度分布和指导优化磨机的研磨效率,降低研磨能耗,对制备低灰分的超净煤具有非常重要的作用。通过田口(Taguchi)正交实验设计,使用实验室1. 5 L立式搅拌磨机考察了不同煤的物性参数、磨介尺寸和煤粉比处理量对于超细研磨的影响,将基于研磨过程特征的动力学模型——矩阵粒群平衡模型(Matrix Population Balance Model,M-PBM)用于煤粉的搅拌磨机超细研磨出料的粒度预测,并结合Rosin-Rammler粒度分布模型,精确地预测出料产品在任意筛下累积含量对应的颗粒粒度。通过极差分析,探讨了煤的灰分、磨介尺寸和煤粉比处理量对于超细研磨能耗和比通量的影响大小,基于对煤粉超细研磨过程中煤-灰解离过程的分析并结合Tomoyoshi的比表面积能耗公式,探讨了煤的灰分与能耗的关系,并进一步建立了煤的灰分、磨介尺寸和煤粉比处理量与磨机研磨比通量和能耗的关系式,研究发现搅拌球磨机湿法超细研磨的粒度变化规律符合一阶线性动力学假设,在定搅拌转轴转速和所考查的研磨粒度变化范围内,煤的灰分对搅拌磨机的比通量和能耗的影响是最大的,建立的研磨能耗和比通量关系式表明在10μm(p50)以下的超细粉磨粒度范围内,煤的研磨能耗随着灰分的提高、磨介尺寸的减小(磨介尺寸在0. 3~1. 8 mm)和比处理量的增大而减小,而比通量随着灰分的提高、磨介尺寸的减小和比处理量的增大而增大。  相似文献   

18.
为验证破碎方式对磨矿速度和Bond球磨功指数的影响,使用某磁铁矿选矿厂的鄂式破碎产品、圆锥破碎产品和高压辊磨产品,分别进行磨矿动力学试验和Bond球磨功指数试验。结果表明:①高压辊磨产品的可磨性最好,圆锥破碎产品次之,鄂式破碎产品最差。同一破碎产品的磨矿速度随着磨矿时间的增加而降低。不同破碎产品,随着磨矿时间增加,颗粒性质逐步均匀并接近,磨矿速度逐步接近,破碎方式对磨矿速度的影响逐步降低。②Bond球磨功指数试验表明,在磨矿产品粒度大于0.10 mm时,破碎方式对磨矿的能耗影响显著,高压辊磨产品最节能;当磨矿产品粒度小于0.10 mm时,破碎方式对磨矿的能耗影响降低。破碎工艺中增加高压辊磨机,对于增大磨机处理量、降低磨矿能耗十分有益。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号