首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 269 毫秒
1.
以陕北中低温全馏分煤焦油为原料,进行了悬浮床加氢连续进料中试试验,考察了反应温度、空速、催化剂加入量等工艺条件对加氢反应的影响。结果表明:在反应温度445℃、反应压力20 MPa、空速0.5 h-1、催化剂加入量(占煤焦油的质量分数)2%、氢油比(氢气体积与煤焦油质量比)2 000 L/kg的优化工艺条件下,重组分转化率、沥青质转化率、液体收率、气体收率依次为84.72%,85.96%,92.45%,5.53%。  相似文献   

2.
采用150 kg/d悬浮床加氢裂化中试装置,以全馏分高温煤焦油为原料,考察了反应温度、反应质量空速及反应压力对煤焦油加氢裂化反应性能及产物分布的影响。结果表明:升高反应温度和降低反应质量空速,均可以促进煤焦油中重油和沥青质的深度转化,气体和焦炭收率增加,重油收率降低,但过高的反应温度会降低轻油馏分收率;提高反应压力可以抑制气体和焦炭的生成,促进沥青质的加氢转化,保证了较高的轻油收率。在反应温度为465 ℃,反应压力为22 MPa,反应质量空速为0.5 h-1,氢气/原料油(体积质量比, L/kg)为1 500 的最佳条件下,重油和沥青质的转化率分别达到26.05%和62.95%,轻油收率为77.42%,气体和焦炭收率为17.28%。  相似文献   

3.
在小型固定床加氢装置上,研究了中低温煤焦油加氢脱氧(HDO)工艺过程各参数(反应温度、反应压力、液态空速和氢油体积比)对HDO效果的影响。在单因素实验的基础上,采用响应面分析法对HDO工艺条件进行了优化。实验结果表明,在低于380℃下,中低温煤焦油中酚类化合物的HDO反应主要受动力学规律影响,为了达到较好的HDO效果,HDO反应应在高温、高压和低空速下进行。各因素对加氢脱氧率影响大小的顺序为:液态空速反应温度反应压力。优化得到的中低温煤焦油HDO工艺条件为:反应温度385.17℃,反应压力13.51 MP a,液态空速0.30 h-1,氢油体积比1 100∶1。在此工艺条件下,加氢脱氧率可达99.6%±0.03%。  相似文献   

4.
以中国石油克拉玛依石化有限责任公司催化裂化循环油为原料,对加氢处理-加氢裂化组合工艺技术的操作条件进行了优化。结果表明:升高反应温度不利于芳烃的饱和反应,但有利于环烷烃的裂化反应;降低反应压力或增加反应体积空速,产物(>360 ℃馏分)收率均增加,多环芳烃脱除率和多环环烷烃选择性均降低;在反应压力为15 MPa,加氢处理、加氢裂化反应温度分别为360,370 ℃,加氢处理、加氢裂化反应体积空速分别为0.5,0.7 h-1的最佳条件下,产物收率低于20%。  相似文献   

5.
高温煤焦油加氢制取汽油和柴油   总被引:17,自引:4,他引:13  
以山西某焦化厂高温煤焦油为原料,采用加氢保护剂、加氢脱金属催化剂、加氢精制催化剂、缓和加氢裂化催化剂组成的级配方式在小型加氢评价装置上进行加氢工艺研究,并在系统压力12.0M Pa条件下考察了反应温度、氢与油体积比、液态空速对高温煤焦油加氢的影响。实验结果表明,在系统压力12.0M Pa、温度380℃、氢与油体积比1 800∶1、液态空速0.28h-1的条件下对高温煤焦油进行加氢改质,可以实现煤焦油的轻质化,汽油馏分(初馏点~200℃)、柴油馏分(200~360℃)、加氢尾油(高于360℃)分别占产物质量的17.69%,62.04%,20.27%。加氢尾油可作为优质的催化裂化或加氢裂化掺炼原料。  相似文献   

6.
以含固煤焦油为原料,采用150 kg/d悬浮床加氢裂化中试装置进行实验,在在22 MPa条件下考察了反应温度、空速对中低温煤焦油转化率、沥青质转化率、气体产率等产物指标的影响.结果表明:在反应空速0.5 kg/(h·L)、反应温度455℃时,气体产率为6.68%,沥青质转化率为85.64%,总转化率95.94%;而在空速0.5 kg/(h·L)、反应温度445℃时,反应整体转化率92.35%,气体产率5.88%,沥青质转化率为44.14%.  相似文献   

7.
煤焦油通过悬浮床加氢中试装置,进行加氢中试研究.重点考察反应温度、空速和催化剂加入量对煤焦油重质组分转化率、沥青质转化率、液体收率及气体收率的影响.研究表明,反应温度和催化剂加入量对于煤焦油加氢转化影响较大,空速影响较小;催化剂的加入不仅可以促进煤焦油中重组分的转化,而且对产物分布和产品质量起到促进和改善作用.  相似文献   

8.
潘海涛  高歌  雷振  陆江银 《石油化工》2014,43(5):517-522
以γ-Al2O3为载体,通过浸渍法制备了Co-Mo/γ-Al2O3催化剂,并用硫代硫酸铵对催化剂进行预硫化,在连续固定床反应器上考察了反应温度、重时空速和Mo负载量对低温煤焦油加氢裂化性能的影响。采用XRD,NH3-TPD,H2-TPR等手段对催化剂进行了表征,并对加氢裂化轻质油进行了密度、黏度、元素分析、馏程和FTIR等测试。实验结果表明,煤焦油经加氢后,油品品质明显改善。在反应温度为450℃、重时空速为0.4~0.6 h-1、Mo负载量(w)为10%~12%的优化条件下,加氢裂化效果最为显著,轻质油(汽油馏分和柴油馏分)收率约为80%。煤焦油加氢裂化后,烯烃、芳烃和氧含量显著降低。  相似文献   

9.
以中低温煤焦油轻油为原料,采用直接加氢-溶剂脱蜡耦合工艺制备煤基蜡;在三管式固定床加氢反应器,考察反应温度、反应压力及空速对煤焦油直接加氢产物性质及正构烷烃含量的影响;采用溶剂脱蜡技术得到煤基蜡产品,并对其熔点、正构烷烃组分含量进行测定。结果表明:煤焦油直接加氢-溶剂脱蜡耦合工艺的最优条件为反应温度380 ℃,反应压力13 MPa,液体体积空速0.3 h-1,酮苯质量比8:1,剂油质量比5:1;在最优条件下制备的煤基蜡熔点为50.7 ℃,正构烷烃质量分数为93.7%。  相似文献   

10.
中国石化抚顺石油化工研究院开发的煤焦油高压加氢处理与加氢裂化两段加氢组合工艺生产清洁燃料油技术在某炼油厂160 kt/a煤焦油加氢装置的工业应用结果表明,以煤焦油预处理后的小于500 ℃馏分油为原料,在反应压力为15.0 MPa、氢油体积比为1 000、加氢处理反应温度为(基准+10)℃、体积空速为(基准+0.2)h-1、加氢裂化反应温度为(基准+30) ℃、体积空速为(基准+0.2)h-1的条件下,小于160 ℃馏分硫质量分数为3.3 μg/g,辛烷值(RON)为65.3,可作为低硫石脑油;160~375 ℃柴油馏分的密度为0.852 5 g/cm3,十六烷值为49.5,凝点为-10 ℃,是优质的柴油调合组分;大于375 ℃加氢裂化尾油硫质量分数为2.6 μg/g,芳烃质量分数为2.0%,是很好的润滑油基础油原料。  相似文献   

11.
考察了典型煤焦油(取自山西保德,下称BD)及新疆塔河减压渣油(VR)中沥青质的热转化反应性能差异。以热重分析方法模拟了2种正庚烷沥青质的热转化反应,发现BD正庚烷沥青质更易转化,250 ℃以上就有明显失重,VR正庚烷沥青质在400 ℃以上才会发生明显的热裂化反应。在催化临氢热转化过程中,BD正戊烷沥青质中的正庚烷沥青质同样更易发生转化,而且相同条件下反应体系中焦炭生成率更低;反应温度340 ℃时BD正庚烷沥青质转化率为98.87%,而360 ℃时VR正庚烷沥青质的转化率仅为35.33%;反应后产物中BD正庚烷沥青质氢碳比升高,芳香度降低,发生了明显的加氢反应,VR正庚烷沥青质则以脱烷基侧链反应为主。根据煤焦油沥青质反应的规律和原料性质,提出了以“最大化脱除中低温煤焦油中金属杂质,兼顾沥青质转化”为目的的中低温煤焦油浆态床加氢新思路,在高压釜小试条件下表现出了良好的原料适用性,值得进一步放大研究。  相似文献   

12.
在3×400 mL固定床加氢中试装置上评价了重油固定床加氢催化剂(包括重油加氢保护剂、重油加氢精制催化剂和芳烃饱和催化剂)用于中/低温煤焦油加氢改质的效果。中试条件为:原料体积空速0.8 h-1(按加氢精制催化剂计算),反应压力12.0 MPa和13.5 MPa,氢油比1 200∶1,保护剂床层平均反应温度270℃,精制催化剂床层平均反应温度350℃,芳烃饱和催化剂床层平均反应温度360℃,在2个操作压力下各运转120 h。结果表明:提高煤焦油加氢改质反应压力,有利于杂原子的脱除。煤焦油经过加氢改质后,残炭、杂原子、芳烃含量大大降低,各馏分产品性质明显改善。产物中石脑油馏分含量增加,芳烃潜含量高,可作为优质的催化重整原料;柴油馏分含量基本不变,硫、氮含量低,凝点低,可作为优质的柴油调合组分;蜡油馏分含量明显降低,残炭和金属含量少,可作为优质的催化裂化原料。上述结果表明将重油固定床加氢催化剂用于煤焦油加氢改质在技术上是可行的。  相似文献   

13.
通过溶剂稀释在110℃热过滤脱除高温煤焦油中的喹啉不溶物(QI);再经过减压蒸馏将溶剂及煤焦油中的轻组分去除,得到软化点适中、QI 质量分数为0.548%的净化沥青。进一步通过温和加氢工艺,将沥青中的 QI 质量分数降低至0.087%;加氢沥青经过500℃延迟焦化、1 000℃高温煅烧获得针状焦制品。与日本三菱公司产品相比较,针状焦性能指标相当。机理研究表明:煤焦油沥青催化加氢是不饱和烃加氢和脱硫、脱氮的过程,加氢后体系的H/C原子比提高,N、S元素含量降低;焦化反应中,芳烃会经过脱氢、环化、芳构化重组形成相对分子质量大、热力学稳定的多核稠环芳烃化合物,继而形成平面圆盘状的缩合多核稠环芳烃化合物,由于空间表面能会卷曲生成中间相复球,进而融并成平行排列的中间相体系,在气流作用下形成“针状”结构,固化、焦化后获得针状焦。  相似文献   

14.
为了得到化学链热解煤焦油制备炭黑系统的优化运行参数,以Aspen Plus为平台建立了模拟流程。以炭黑产率、煤焦油转化率、产气率和能量转化率为评判指标,得到了系统优化的操作条件,并分析了操作参数(燃料反应器温度、反应时间和载氧体/煤焦油摩尔比、操作压力)对热解产物的影响。结果表明,在温度900℃,反应时间3 s,载氧体/煤焦油摩尔比为5.2,操作压力为0.75 MPa的条件下,炭黑产率最大,此时煤焦油转化率为99.5%,产气率为3.39,系统的能量转化率为85.7%。  相似文献   

15.
中低温煤焦油加氢脱金属动力学研究   总被引:2,自引:1,他引:1  
在小型固定床加氢装置上,用加氢保护催化剂、加氢脱金属催化剂和加氢裂化催化剂对煤焦油进行了加氢脱金属动力学研究。考察了反应温度、氢分压、液态空速等操作参数对加氢脱金属反应活性的影响,建立了煤焦油加氢脱金属反应的动力学模型,通过Levenberg-Marquardt法拟合出各动力学参数,同时采用实测数据对模型进行了验证。实验结果表明,煤焦油加氢脱金属反应为1.2级反应,活化能为53.896kJ/mol,煤焦油加氢脱金属反应与渣油加氢脱金属反应类似;对加氢脱金属影响大小的参数顺序为:液态空速>反应温度>氢分压;动力学模型的相对误差均小于2.7%,该模型可较准确地预测产品中的金属含量。  相似文献   

16.
在小型固定床加氢装置上对煤焦油加氢脱金属催化剂、脱硫催化剂和脱氮催化剂级配比例进行了研究。考察了反应温度和液体体积空速对催化剂加氢反应活性的影响,建立了煤焦油加氢精制动力学模型。通过 Levenberg-Marquardt法拟合出各动力学参数,并根据模型得到了适合煤焦油加氢精制的级配参数。结果表明,该模型可对加氢精制过程的金属、硫、氮脱除率进行预测,并可根据煤焦油加氢操作工艺条件和产品油的要求,推算出适合的催化剂级配比例。  相似文献   

17.
重点考察在反应温度455℃、压力20 MPa、空速不变、氢油比不变的工艺条件下,煤+油浆浓度分别在15%、25%、35%、40%下煤的转化率,发现进料煤浓度40%反应器温度为455℃、压力20 MPa、空速为0.5 h-1时达到最佳反应效果,煤转化率达85.4%,验证了煤和油浆共炼的适应性良好.油煤共炼装置在不同浓度的...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号