首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Component middleware provides dependable and efficient platforms that support key functional, and quality of service (QoS) needs of distributed real-time embedded (DRE) systems. Component middleware, however, also introduces challenges for DRE system developers, such as evaluating the predictability of DRE system behavior, and choosing the right design alternatives before committing to a specific platform or platform configuration. Model-based technologies help address these issues by enabling design-time analysis, and providing the means to automate the development, deployment, configuration, and integration of component-based DRE systems. To this end, this paper applies model checking techniques to DRE design models using model transformations to verify key QoS properties of component-based DRE systems developed using Real-time CORBA. We introduce a formal semantic domain for a general class of DRE systems that enables the verification of distributed non-preemptive real-time scheduling. Our results show that model-based techniques enable design-time analysis of timed properties and can be applied to effectively predict, simulate, and verify the event-driven behavior of component-based DRE systems. This research was supported by the NSF Grants CCR-0225610 and ACI-0204028 Gabor Madl is a Ph.D. student and a graduate student researcher at the Center for Embedded Computer Systems at the University of California, Irvine. His advisor is Nikil Dutt. His research interests include the formal verification, optimization, component-based composition, and QoS management of distributed real-time embedded systems. He received his M.S. in computer science from Vanderbilt University and in computer engineering from the Budapest University of Technology and Economics. Dr. Sherif Abdelwahed received his Ph.D. degree in Electrical and Computer Engineering from the University of Toronto, Canada, in 2001. During 2000–2001, he was a research scientist with the system diagnosis group at the Rockwell Scientific Company. Since 2001 he has been with the Department of Electrical Engineering and Computer Science at Vanderbilt University as a Research Assistant Professor. His research interests include verification and control of distributed real-time systems, and model-based diagnosis of discrete-event and hybrid systems. Dr. Douglas C. Schmidt is a Professor of Computer Science, Associate Chair of the Computer Science and Engineering program, and a Senior Researcher in the Institute for Software Integrated Systems (ISIS) all at Vanderbilt University. He has published over 300 technical papers and 6 books that cover a range of research topics, including patterns, optimization techniques, and empirical analyses of software frameworks and domain-specific modeling environments that facilitate the development of distributed real-time and embedded (DRE) middleware and applications. Dr. Schmidt has served as a Deputy Office Director and a Program Manager at DARPA, where he lead the national R&D effort on middleware for DRE systems. In addition to his academic research and government service, Dr. Schmidt has over fifteen years of experience leading the development of ACE, TAO, CIAO, and CoSMIC, which are widely used, open-source DRE middleware frameworks and model-driven tools that contain a rich set of components and domain-specific languages that implement patterns and product-line architectures for high-performance DRE systems.  相似文献   

3.
Assuring end-to-end quality-of-service (QoS) in distributed real-time and embedded (DRE) systems is hard due to the heterogeneity and scale of communication networks, transient behavior, and the lack of mechanisms that holistically schedule different resources end-to-end. This paper makes two contributions to research focusing on overcoming these problems in the context of wide area network (WAN)-based DRE applications that use the OMG Data Distribution Service (DDS) QoS-enabled publish/subscribe middleware. First, it provides an analytical approach to bound the delays incurred along the critical path in a typical DDS-based publish/subscribe stream, which helps ensure predictable end-to-end delays. Second, it presents the design and evaluation of a policy-driven framework called Velox. Velox combines multi-layer, standards-based technologies—including the OMG DDS and IP DiffServ—to support end-to-end QoS in heterogeneous networks and shield applications from the details of network QoS mechanisms by specifying per-flow QoS requirements. The results of empirical tests conducted using Velox show how combining DDS with DiffServ enhances the schedulability and predictability of DRE applications, improves data delivery over heterogeneous IP networks, and provides network-level differentiated performance.  相似文献   

4.
Commercial off-the-shelf (COTS) middleware is now widely used to develop distributed real-time and embedded (DRE) systems. DRE systems are themselves increasingly combined to form systems of systems that have diverse quality of service (QoS) requirements. Earlier generations of COTS middleware, such as Object Request Brokers (ORBs) based on the CORBA 2.x standard, did not facilitate the separation of QoS policies from application functionality, which made it hard to configure and validate complex DRE applications. The new generation of component middleware, such as the CORBA Component Model (CCM) based on the CORBA 3.0 standard, addresses the limitations of earlier generation middleware by establishing standards for implementing, packaging, assembling, and deploying component implementations.There has been little systematic empirical study of the performance characteristics of component middleware implementations in the context of DRE systems. This paper therefore provides four contributions to the study of CCM for DRE systems. First, we describe the challenges involved in benchmarking different CCM implementations. Second, we describe key criteria for comparing different CCM implementations using key black-box and white-box metrics. Third, we describe the design of our CCMPerf benchmarking suite to illustrate test categories that evaluate aspects of CCM implementation to determine their suitability for the DRE domain. Fourth, we use CCMPerf to benchmark CIAO implementation of CCM and analyze the results. These results show that the CIAO implementation based on the more sophisticated CORBA 3.0 standard has comparable DRE performance to that of the TAO implementation based on the earlier CORBA 2.x standard.Arvind S. Krishna is a PhD student in the Electrical Engineering and Computer Science Department at Vanderbilt University and a member of the Institute for Software Integrated Systems. He received his MA in management from the Brila Institute for Technology and Science (BITS), Pilani, India and his MS in computer science from University of California, Irvine. His research interests include patterns, real-time Java technologies for Real-Time Corba, model-integrated QA techniques, and tools for partial evaluation and specialization of middleware. He is a student member of the IEEE and ACM. Contact him at the Inst. for Software Integrated Systems, 2015 Terrace Pl., Nashville, TN 37203.Balachandran Natarajan is a senior staff engineer at the Institute for Software Integrated Systems and a PhD student in electrical engineering and computer science at Vanderbilt University. His research focuses on applying patterns, optimization principles, and frameworks to build high-performance, dependable, and real-time distributed systems. He received his MS in computer science from Washington University. Contact him at the Inst. for Software Integrated Systems, 2015 Terrace Pl., Nashville, TN 37203.Aniruddha Gokhale is an assistant professor in the Electrical Engineering and Computer Science Department at Vanderbilt University and a senior research scientist at the Institute for Software Integrated Systems. His research focuses on real-time component middleware optimizations, distributed systems and networks, model-driven software synthesis applied to component middleware-based distributed systems, and distributed resource management. He received his PhD in computer science from Washington University. Contact him at the Inst. for Software Integrated Systems, 2015 Terrace Pl., Nashville, TN 37203.Douglas C. Schmidt is a professor in the Electrical Engineering and Computer Science Department at Vanderbilt University and a senior research scientist at the Institute for Software Integrated Systems. His research interests include patterns, optimization techniques, and empirical analyses of software frameworks and domain-specific modeling environments that facilitate the development of distributed real-time and embedded middleware and applications running over high-speed networks and embedded system interconnects. He received his PhD in information and computer science at the University of California, Irvine. Contact him at the Inst. for Software Integrated Systems, 2015 Terrace Pl., Nashville, TN 37203.Nanbor Wang is a Research Scientist in the Distributed Technologies Group at the Tech-X Corporation in Boulder, Colorado. He received M.S. and Ph.D. degrees in Computer Science from Washington University in St. Louis, Missouri. While working for his degree, he also worked as a Research Associate in the Center of Distributed Object Computing in the Department of Computer Science where he conducted research on design, implementation and analysis of object-oriented and component-based techniques for development of distributed systems and management of extra-functional concerns. Dr. Wangs work currently focuses on developing and applying middleware techniques, such as CORBA and Grid Computing, for enabling distributed and parallel scientific applications, such as, distributed data analysis, remote visualization and collaboration, and, work-flow management for large-scale scientific applications.Gautam H. Thaker was born in Amdavad, India, in 1955. He holds a BSEE (75) and MSEE (77) from Clemson University, Clemson, SC. He spent the 85-86 academic year at M.I.T. as a visiting researcher. His research interests include analysis, design, construction and validation of real-time, command and control systems. In particular he has focused on interactions between operating systems, networking protocols, and middleware technologies.  相似文献   

5.
支持QoS的中间件技术在构造分布式实时嵌入式系统中得到了广泛应用,已成为支持实时发布/订阅服务的关键技术.评估并分析了QoS中间件中3种集成实时发布/订阅服务方法.重点研究了容器管理方式的性能,并与面向对象的实时发布/订阅服务比较.研究结果表明,容器管理方式中,CIAO中间件的等待时间稍长,有可预测性,适用于DRE系统.  相似文献   

6.
An overview of the Real-Time CORBA specification   总被引:2,自引:0,他引:2  
Schmidt  D.G. Kuhns  F. 《Computer》2000,33(6):56-63
A growing class of real-time systems require end-to-end support for various quality-of-service (QoS) aspects, including bandwidth, latency, jitter and dependability. Applications include command and control, manufacturing process control, videoconferencing, large-scale distributed interactive simulation, and testbeam data acquisition. These systems require support for stringent QoS requirements. To meet this challenge, developers are turning to distributed object computing middleware, such as the Common Object Request Broker Architecture, an Object Management Group (OMG) industry standard. In complex real-time systems, DOC middleware resides between applications and the underlying operating systems, protocol stacks and hardware. CORBA helps decrease the cycle time and effort required to develop high-quality systems by composing applications using reusable software component services rather than building them entirely from scratch. The Real-Time CORBA specification includes features to manage CPU, network and memory resources. The authors describe the key Real-Time CORBA features that they feel are the most relevant to researchers and developers of distributed real-time and embedded systems  相似文献   

7.
《Computer》2001,34(7):99-101
Distributed mission-critical environments employ a mixture of hard and soft real-time applications that usually expect a guaranteed range of quality of service (QoS). These applications have different levels of criticality and varied structures ranging from periodic independent tasks to distributed pipelines or event-driven modules. The underlying distributed system must evolve and adapt to the high variability in resource demands that competing applications impose. The current industry trend is to use commercial off-the-shelf (COTS) hardware and software components to build distributed environments for mission-critical applications. The paper considers how adding a middleware layer above the COTS components facilitates consistent management of system resources, decreases system complexity, and reduces development costs  相似文献   

8.
在分析传统的分布式实时嵌入式系统开发过程中,针对服务质量(QoS)评价方法存在弊端的问题,总结了运用模型驱动工程(MDE)对分布式实时嵌入式系统的服务质量进行管理,将服务质量评价引入系统开发周期的各种探索,指出该方法应解决的几个关键问题,并分析了几种具有代表性解决方案的优缺点,提出了解决方法和建议.  相似文献   

9.
Assuring end-to-end QoS in enterprise distributed real-time and embedded (DRE) systems is hard due to the heterogeneity and transient behavior of communication networks, the lack of integrated mechanisms that schedule communication and computing resources holistically, and the scalability limits of IP multicast in wide-area networks (WANs). This paper makes three contributions to research on overcoming these problems in the context of enterprise DRE systems that use the OMG Data Distribution Service (DDS) quality-of-service (QoS)-enabled publish/subscribe (pub/sub) middleware over WANs. First, it codifies the limitations of conventional DDS implementations deployed over WANs. Second, it describes a middleware component called Proxy DDS that bridges multiple, isolated DDS domains deployed over WANs. Third, it describes the NetQSIP framework that combines multi-layer, standards-based technologies including the OMG-DDS, Session Initiation Protocol (SIP), and IP DiffServ to support end-to-end QoS in a WAN and shield pub/sub applications from tedious and error-prone details of network QoS mechanisms. The results of experiments using Proxy DDS and NetQSIP show how combining DDS with SIP in DiffServ networks significantly improves dynamic resource reservation in WANs and provides effective end-to-end QoS management.  相似文献   

10.
Real-time and embedded systems have traditionally been designed for closed environments where operating conditions, input workloads, and resource availability are known a priori, and are subject to little or no change at runtime. There is increasing demand, however, for adaptive capabilities in distributed real-time and embedded (DRE) systems that execute in open environments where system operational conditions, input workload, and resource availability cannot be characterized accurately a priori. A challenging problem faced by researchers and developers of such systems is devising effective adaptive resource management strategies that can meet end-to-end quality of service (QoS) requirements of applications. To address key resource management challenges of open DRE systems, this paper presents the Hierarchical Distributed Resource-management Architecture (HiDRA), which provides adaptive resource management using control techniques that adapt to workload fluctuations and resource availability for both bandwidth and processor utilization simultaneously. This paper presents three contributions to research in adaptive resource management for DRE systems. First, we describe the structure and functionality of HiDRA. Second, we present an analytical model of HiDRA that formalizes its control-theoretic behavior and presents analytical assurance of system performance. Third, we evaluate the performance of HiDRA via experiments on a representative DRE system that performs real-time distributed target tracking. Our analytical and empirical results indicate that HiDRA yields predictable, stable, and efficient system performance, even in the face of changing workload and resource availability.  相似文献   

11.
Next generation distributed applications are often hosted on heterogeneous platforms including different kinds of middleware. Due to the applications’ growing functional complexity and their multiple quality of service (QoS) requirements, system developers are increasingly facing a substantial number of middleware provisioning challenges, which include configuring, optimizing and validating the middleware platforms for QoS properties. Traditional techniques for middleware provisioning tend to use non-intuitive, low-level and technology-specific approaches, which are tedious, error prone, and non-reusable across different technologies. Quite often the middleware provisioning activities are carried out by different actors without much interaction among them, which results in an iterative trial-and-error process to provisioning. Higher level abstractions, particularly those that use visual models, are effective in addressing these challenges. This paper describes the design of a visual modeling language called POSAML (pattern-oriented software architecture modeling language) and associated tools that provide an intuitive, higher level and unified framework for provisioning middleware platforms. POSAML provides visual modeling capabilities for middleware-independent configurations and optimizations while enabling automated middleware-specific validation of system QoS properties.  相似文献   

12.
Distributed real-time and embedded (DRE) systems in which application requirements and environmental conditions may not be known a priori—or which may vary at run-time—can benefit from an adaptive approach to management of quality-of-service (QoS) to meet key constraints, such as end-to-end timeliness. Moreover, coordinated management of multiple QoS capabilities across multiple layers of applications and their supporting middleware can help to achieve necessary assurances of meeting these constraints.This paper offers two contributions to the study of adaptive DRE computing systems: (1) a case study of our integration of multiple middleware QoS management technologies to manage quality and timeliness of imagery adaptively within a representative DRE avionics system and (2) empirical results and analysis of the impact of that integration on key trade-offs between timeliness and image quality in that system.This work was supported in part by AFRL contract F33615-97-D-1155/0005 (WSOA), NSF ITR CCR-0312859, Siemens, and DARPA/AFRL contracts F33615-03-C-4112, F30602-98-C-0187 and F33615-00-C-1694. Approved for public release, distribution unlimited.Christopher D. Gill is an Assistant Professor in the Department of Computer Science and Engineering at Washington University in St. Louis. He has published over 50 refereed technical articles in leading journals, conferences, workshops, and book series. His research focuses on distributed real-time embedded systems, with particular emphasis on adaptive mresource management, scheduling, and software design and implementation for time-and-space constrained systems. Dr. Gill has chaired numerous workshop and conference program committees, and has participated widely in review panels and standards organizations in the distributed and real-time systems areas. The research he has led has produced several freely available open-source software frameworks including the Kokyu scheduling and dispatching framework and the nORB small-footprint real-time object request broker.Jeanna Gossett joined The Boeing Company in 1999 as a member of Bold Stroke/Open Systems Architecture team. Jeanna has worked on several CRAD projects including Weapon Systems Open Architecture (WSOA) where she was responsible for incorporating quality of service and resource management software technology into the fighter aircraft real-time embedded system application. Jeanna has since joined the F/A-18 New Product Development Mission Systems team. Prior to joining The Boeing Company in 1999, she worked in the telecommunications industry as an embedded systems developer at Ericsson and Siemens AG. Jeanna received a B.S. in Electrical Engineering from Southern Illinois University, Edwardsville and is a 2005 M.B.A. candidate at Washington University in St. Louis.David Corman is a Technical Fellow at the Boeing Company, located in St. Louis, Mo. Dave is the chief scientist for the Network Centric Operations (NCO) thrust in Phantom Works (PW) and is responsible for developing the NCO technology research agenda and investment strategy. He is also the Principle Investigator (PI) for a variety of Air Force and Defense Advanced Research Project Agency (DARPA) programs that are producing technologies for integrating legacy platforms into the emerging Global Information Grid and for autonomous control of unmanned systems. Since joining the former McDonnell-Douglas (now part of the Boeing Company) in 1983, Dave has worked on numerous projects ranging from embedded systems to large C4I and weapon systems. A major focus of Daves career has been on the development of C4I system simulations and in mission planning system development for aircraft and missiles. He has also served as a consultant to many weapon system and C4I programs in St. Louis, Seattle, and California. Prior to joining McDonnell-Douglas, Dave spent five years at the Johns Hopkins University Applied Physics Laboratory. He was the first recipient of a Naval Research Laboratory Fellowship from the University of Maryland—College Park where he received his PhD in Electrical Engineering in 1983.Joseph Loyall is a division scientist at BBN Technologies, where he leads the Distributed Real-time Embedded (DRE) systems research thrust in the Distributed Systems Advanced Middleware Technology group. He is actively involved in developing integrated dynamic resource management capabilities and advanced software engineering using model driven architecture (MDA) approaches, and in applying adaptive behavior to operational embedded systems such as collections of unmanned and manned air vehicles. Dr. Loyall has a Ph.D. and M.S. in computer science from the University of Illinois and a B.S. in computer science from Indiana University. He can be contacted at jloyall@bbn.com.Richard E. Schantz is a principal scientist at BBN Technologies in Cambridge, Mass., where he has been a key contributor to advanced distributed computing R&D for the past 30 years. His research has been instrumental in defining and evolving the concepts underlying middleware since its emergence in the early days of the Internet. He was directly responsible for developing the first operational distributed object computing capability and transitioning it to production use. More recently, he has led research efforts toward developing and demonstrating the effectiveness of middleware support for adaptively managed Quality Of Service control, as principal investigator on a number of key DARPA projects in the areas of adaptive real-time behavior, survivability and advanced software engineering. Schantz received his Ph.D. degree in Computer Science from the State University of New York at Stony Brook, in 1974.Michael Atighetchi is a senior scientist at BBN Technologies and a senior member of the Distributed Systems Advanced Middleware Technology group. His interests include use of adaptation in survivable systems, network and operating system security, and distributed coordination. Contact him at matighet@bbn. comDouglas C. Schmidt (d.schmidt@vanderbilt.edu) is a Professor of Electrical Engineering and Computer Science, Associate Chair of the Computer Science and Engineering program, and a Senior Researcher in the Institute for Software Integrated Systems (ISIS) at Vanderbilt University. He has published over 300 technical papers and books that cover a range of research topics, including patterns, optimization techniques, and empirical analyses of software frameworks and domain-specific modeling environments that facilitate the development of distributed real-time and embedded (DRE) middleware and applications running over high-speed networks and embedded system interconnects. Dr. Schmidt has served as a Deputy Office Director and a Program Manager at DARPA, where he led the national R&D effort on middleware for DRE systems.  相似文献   

13.
With the explosive growth of the Internet and World Wide Web comes a dramatic increase in the number of users that compete for the shared resources of distributed system environments. Most implementations of application servers and distributed search software do not distinguish among requests to different web pages. This has the implication that the behavior of application servers is quite unpredictable. Applications that require timely delivery of fresh information consequently suffer the most in such competitive environments. This paper presents a model of quality of service (QoS) and the design of a QoS-enabled information delivery system that implements such a QoS model. The goal of this development is two-fold. On one hand, we want to enable users or applications to specify the desired quality of service requirements for their requests so that application-aware QoS adaptation is supported throughout the Web query and search processing. On the other hand, we want to enable an application server to customize how it should respond to external requests by setting priorities among query requests and allocating server resources using adaptive QoS control mechanisms. We introduce the Infopipe approach as the systems support architecture and underlying technology for building a QoS-enabled distributed system for fresh information delivery. Ling Liu, Ph.D.: She is an associate professor at the College of Computing, Georgia Institute of Technology. She received her Ph.D. from Tilburg University, The Netherlands in 1993. Her research interests are in the area of large-scale data intensive systems and its applications in distributed, mobile, multimedia, and Internet computing environments. Her work has focused on systems support for creating, searching, manipulating, and monitoring streams of information in wide area networked information systems. She has published more than 70 papers in internal journals or international conferences, and has served on more than 20 program committees in the area of data engineering, databases, and knowledge and information management. Calton Pu, Ph. D.: He is a Professor and John P. Imlay, Jr. Chair in Software at the College of Computing, Georgia Institute of Technology. Calton received his Ph.D. from University of Washington in 1986. He leads the Infosphere expedition project, which is building the system software to support the next generation information flow applications. Infosphere research includes adaptive operating system kernels, communications middleware, and distributed information flow applications. His past research included operating system projects such as Synthetix and Microfeedback, extended transaction projects such as Epsilon Serializability, and Internet data management. He has published more than 125 journal and conference papers, and served on more than 40 program committees. Karsten Schwan, Ph.D.: He is a professor in the College of Computing at the Georgia Institute of Technology. He received the M.Sc. and Ph.D. degrees from Carnegie-Mellon University in Pittsburgh, Pennsylvania. He directs the IHPC project for high performance cluster computing at Georgia Tech. His current research addresses the interactive nature of modern high performance applications (i.e., online monitoring and computational steering), the development of efficient and object-based middleware, the operating system support for distributed and parallel programs, and the online configuration of applications for distributed real-time applications and for communication protocols. Jonathan Walpole, Ph.D.: He is a Professor in the Computer Science and Engineering Department at oregon Graduate Institute of Science and Technology. He received his Ph.D. in Computer Science from Lancaster University, U.K. in 1987. His research interests are in the area of adaptive systems software and its application in distributed, mobile, multimedia computing environments. His work has focused on quality of service specification, adaptive resource management and dynamic specialization for enhanced performance, survivability and evolvability of large software systems, and he has published extensively in these areas.  相似文献   

14.
Thispaper presents resource management techniques that achieve thequality of service (QoS) requirements of dynamic real-time systemsusing open architectures and commercial off-the-shelf technologies(COTS). Dynamic real-time systems are subject to constant changessuch as a varying external environment, overload of internalsystems, component failure, and evolving operational requirements.Examples of such systems include the emerging generation of computer-based,command and control systems of the U.S. Navy. To enable the engineeringof such systems, we present adaptive resource management middlewaretechniques that achieve the QoS requirements of the system. Themiddleware performs QoS monitoring and failure detection, QoSdiagnosis, and reallocation of resources to adapt the systemto achieve acceptable levels of QoS. Experimental characterizationsof the middleware using a real-time benchmark illustrate itseffectiveness for adapting the system for achieving the desiredreal-time and survivability QoS during overload situations.  相似文献   

15.
16.
Wireless Sensor Networks (WSNs) are useful for a wide range of applications, from different domains. Recently, new features and design trends have emerged in the WSN field, making those networks appealing not only to the scientific community but also to the industry. One such trend is the running different applications on heterogeneous sensor nodes deployed in multiple WSNs in order to better exploit the expensive physical network infrastructure. Another trend deals with the capability of accessing sensor generated data from the Web, fitting WSNs in novel paradigms of Internet of Things (IoT) and Web of Things (WoT). Using well-known and broadly accepted Web standards and protocols enables the interoperation of heterogeneous WSNs and the integration of their data with other Web resources, in order to provide the final user with value-added information and applications. Such emergent scenarios where multiple networks and applications interoperate to meet high level requirements of the user will pose several changes in the design and execution of WSN systems. One of these challenges regards the fact that applications will probably compete for the resources offered by the underlying sensor nodes through the Web. Thus, it is crucial to design mechanisms that effectively and dynamically coordinate the sharing of the available resources to optimize resource utilization while meeting application requirements. However, it is likely that Quality of Service (QoS) requirements of different applications cannot be simultaneously met, while efficiently sharing the scarce networks resources, thus bringing the need of managing an inherent tradeoff. In this paper, we argue that a middleware platform is required to manage heterogeneous WSNs and efficiently share their resources while satisfying user needs in the emergent scenarios of WoT. Such middleware should provide several services to control running application as well as to distribute and coordinate nodes in the execution of submitted sensing tasks in an energy-efficient and QoS-enabled way. As part of the middleware provided services we present the Resource Allocation in Heterogeneous WSNs (SACHSEN) algorithm. SACHSEN is a new resource allocation heuristic for systems composed of heterogeneous WSNs that effectively deals with the tradeoff between possibly conflicting QoS requirements and exploits heterogeneity of multiple WSNs.  相似文献   

17.
把运用于商务应用和桌面系统的中间件和构件化开发思想应用于分布式实时嵌入式(DistributedReal-timeandEmbedded,DRE)软件领域是当前的一个热门研究话题。CORBA构件模型(CORBAComponentModel,CCM)解决了跨平台语言无关的构件化开发问题,然而在提供QoS保证上CCM存在设计缺陷。论文首先分析了CCM的总体构架,接着提出了一种支持DRE软件开发的新的构件模型Z-CCM,这种构件模型从构件的实现框架、装配过程和运行时环境三方面对CCM进行了优化,以改进CCM在提供QoS保证上的缺陷,从而可以提高DRE软件的开发效率,文章最后介绍了Z-CCM的应用背景。  相似文献   

18.
The software industry has increasingly expanded its adoption of COTS components for complex, mission-critical applications. Using COTS products can shorten development and deployment time because they let system developers focus on creating domain-specific services. Selecting the right COTS component, however, is no easy task. We present a practical process that developers can use to empirically evaluate component dependability in their context. Our approach uses the unified model of dependability, a requirements engineering approach specially devised to capture dependability in context. This model clearly specifies the measurable characteristics the component must have to be dependable in a specific context. The model then serves as a reference, providing guidance on effectively designing experiments to compare similar components and interpret collected data. The process can be applied to any specific context and COTS component. Here, we describe our comparison of the dependability of real-time Java virtual machines (RT JVM) in the spacecraft software context.  相似文献   

19.
ContextModern middleware platforms provide the applications deployed on top of them with facilities for their adaptation. However, the level of adaptation support provided by the state-of-the-art middleware solutions is often limited to dynamically loading and off-loading of software components. Therefore, it is left to the application developers to handle the details of change such that the system’s consistency is not jeopardized.ObjectiveWe aim to change the status quo by providing the middleware facilities necessary to ensure the consistency of software after adaptation. We would like these facilities to be reusable across different applications, such that the middleware can streamline the process of achieving safe adaptation.MethodOur approach addresses the current shortcomings by utilizing the information encoded in a software system’s architectural style. This information drives the development of reusable adaptation patterns. The patterns specify both the exact sequence of changes and the time at which those changes need to occur. We use the patterns to provide advanced adaptation support on top of an existing architectural middleware platform.ResultsOur experience shows the feasibility of deriving detailed adaptation patterns for several architectural styles. Applying the middleware to adapt two real-world software systems shows the approach is effective in consistently adapting these systems without jeopardizing their consistency.ConclusionWe conclude the approach is effective in alleviating the application developers from the responsibility of managing the adaptation process at the application-level. Moreover, we believe this study provides the foundation for changing the way adaptation support is realized in middleware solutions.  相似文献   

20.
Keil  M. Tiwana  A. 《Software, IEEE》2005,22(3):64-69
In the early days of business computing, most software was written from scratch. Companies created applications to automate key business processes such as American Airlines' legendary Sabre computerized reservation system. Such leading-edge applications were challenging to develop. While companies still build custom applications today, the advent of COTS software over the past 30 years has dramatically changed the way they acquire software. In an extensive study involving 126 organizations, we analyze how management information systems (MIS) managers evaluate key attributes of COTS software. The results provide surprising insights into the COTS software characteristics that buyers value most. The findings have important implications for COTS buyers and suppliers. For buyers, we provide an assessment framework for evaluating COTS software. For companies that develop COTS software, we provide insights into what attributes their prospective customers value most.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号