首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 666 毫秒
1.
大多数合成Ⅰb型黄色钻石为高压高温合成类型,CVD合成Ⅰb型黄色钻石在国内至今鲜有相关报道。近期,NGTC深圳实验室在检测过程中首次发现了1颗经高压高温处理的CVD合成Ⅰb型黄色钻石样品。该CVD合成Ⅰb型黄色钻石样品的鉴定分析有助于高效检测疑难样本,对检测行业和规范珠宝市场有重要意义。通过测试CVD合成Ⅰb型黄色钻石样品的红外光谱、紫外-可见吸收光谱、紫外荧光图像和光致发光光谱等特征来总结其鉴定方法。结果显示,由[Si-V]缺陷导致的737、766 nm和946 nm处的发光峰,以及荧光图像上显示明显的条纹生长结构,是该类CVD合成钻石的重要判定特征;同时,未发现596 nm和597 nm双线发光峰、显示较弱的3 123 cm~(-1)吸收峰以及明显的3 107 cm~(-1)吸收峰、H3(503.2 nm)发光峰、N3(415.2 nm)发光峰可判定该CVD合成Ⅰb型黄色钻石样品后期经过高压高温处理。  相似文献   

2.
对天然无色—浅黄色方柱石样品进行电子辐照改色处理,并对部分改色后为褐色/烟紫色的样品进行了热处理,肉眼观察颜色变化情况并进行紫外-可见吸收光谱测试。结果显示,电子辐照处理可使无色—浅黄色方柱石样品变为紫色、黄色,部分样品带棕褐色调。经电子辐照处理成紫色的方柱石的紫外-可见吸收光谱在黄绿区有宽的吸收带;辐照处理成黄色方柱石的紫外-可见吸收光谱中吸收峰位置与天然方柱石基本一致,蓝紫区的吸收明显增强。笔者推测电子辐照致方柱石产生紫色的原因与天然紫色方柱石颜色的成因可能相似,而产生黄色的原因可能与O-色心有关。加热处理实验结果表明:恒温时间为2h,恒温温度在500℃以下时,辐照产生的不理想的褐色调不能被有效消除;恒温温度为600℃,恒温时间2h以上时,辐照改色的样品褪色为近无色—浅黄色;加热气氛对方柱石颜色变化的影响不大。  相似文献   

3.
钻石的联合处理已成为钻石改色处理的主要手段之一,红色钻石一直是研究者希望通过联合处理得到的钻石品种。基于联合处理过程中的色心转变,对15颗Ib型高温高压合成钻石样品进行辐照和高温高压联合处理,得到了一系列红色钻石。合成钻石样品经过辐照处理后颜色具有黄绿色调,辐照和高温高压联合处理后变成了红色、紫红色、橙红色,其红色的产生与(N-V)-色心有关。采用傅里叶红外光谱仪以及USB4000光纤光谱仪对比分析合成钻石样品处理前、后的红外光谱和紫外-可见光谱,得到此类改色钻石的鉴定特征。红外光谱测试结果表明,本次实验样品处理前、后钻石的类型没有发生变化。辐照后样品的紫外-可见光谱在741nm处有吸收峰;辐照和高温高压联合处理后样品在紫外-可见光谱中637nm处的吸收峰,400~450nm范围内的吸收以及550nm左右的吸收峰均可以作为辐照和高温高压联合处理红色钻石的鉴定特征。  相似文献   

4.
国家珠宝玉石质量监督检验中心(NGTC)收集了无色、粉色、蓝色的合成钻石饰品品牌"Lightbox Jewelry"的样品,并进行了详细的测试工作,包括显微镜观察、发光图像观察、光谱学测试等。研究表明,Lightbox Jewelry饰品的主石为CVD合成钻石,红外光谱均显示为Ⅱa型;拉曼光致发光光谱均可测得596/597 nm发光线,指示样品均未经历过后期高压高温处理,部分可测得737 nm双线,粉色样品还可见明显的595、637、741 nm等特征吸收,推测其在合成后期可能经历了辐照退火处理;蓝色样品紫外-可见吸收光谱可见621 nm宽带、741 nm吸收峰,红外光谱可见9 287 cm~(-1)吸收峰,推测其经历了辐照处理。对无色配石进行了测试研究,发现绝大多数配石为高压高温合成钻石,另外混入了个别天然钻石。  相似文献   

5.
平均每一万颗钻石中才有一颗彩色钻石,而在彩色钻石中绿色钻石非常稀少,颜色能够达到艳彩级别的更是十分罕见。绿色钻石的成因主要有四类,其中最为常见的是辐照,并且该种成因致色的钻石的红外类型包括Ia型和Ⅱa型,但在实际检测中,天然辐照Ⅱa型钻石极为罕见。在NGTC深圳实验室发现Ⅱa型绿色钻石样品,这引起了检测人员的注意,经过检测,判定其为辐照处理钻石。通过测试样品的红外吸收光谱、紫外—可见近红外吸收光谱和光致发光光谱等特征,发现样品在741nm处呈现出较强的吸收,并且伴随着红区的一段宽吸收;在近红外光谱上可见9280cm~(-1)的强吸收峰;在光致发光光谱上可见3H发光峰(503.4nm),并伴随着540.7nm发光峰。  相似文献   

6.
采用宽频诱导发光仪(GV5000)、钻石观测仪(DiamondViewTM)对经高压高温处理和辐照处理的天然及CVD合成钻石进行荧光图像观察以及荧光光谱测试分析,结合光致发光光谱研究结果表明,经同一处理方法的钻石的发光性特征具有一致性,经高压高温处理的Ⅰa型天然钻石均呈现黄绿色荧光,荧光光谱具有460,520nm两处发光峰;经辐照处理的Ⅰa型天然钻石均呈现蓝色荧光,荧光光谱可见450nm处发光峰,部分还具有830,884nm处弱发光峰;经辐照处理的CVD合成钻石呈现绿色-褐绿色荧光,荧光光谱可见488、620、741、786、895nm处发光峰。不同处理方法、外观颜色相近的钻石,可通过荧光图像观察和荧光光谱分析进行判别。  相似文献   

7.
基于钻石在复合处理(辐照和高压高温处理)过程中的色心转变,在一定的处理工艺条件下,对25粒ⅠaAB型天然钻石进行复合处理,辐照处理后钻石呈浅蓝色、蓝绿色、绿色,复合处理后钻石呈金黄色和褐黄色。采用红外光谱仪,USB4000光纤光谱仪对复合处理前后的实验样品进行测试,发现复合处理前后钻石样品的红外光谱没有明显变化,钻石的类型没有改变,辐照处理后样品的紫外-可见吸收光谱在500~750nm的透光率减弱,750~800nm的透光率有所增加,辐照产生了741nm处的吸收凹谷,复合处理后,由辐照产生的辐照损伤心741nm消失,复合处理后钻石样品在500~800nm的透光率增加,表现在肉眼可以观察到钻石的亮度有所提高。  相似文献   

8.
国产大颗粒宝石级无色高压高温合成钻石的鉴定特征   总被引:2,自引:0,他引:2  
自2015年年初以来,市场上出现大量的无色高压高温(HPHT)合成小钻石作为配石用于首饰镶嵌,这给日常鉴定带来很大的挑战,近来又见大颗粒无色HPHT合成钻石。为了更好的了解不同厂商生长的无色HPHT合成钻石的特征,笔者对收集到的20粒山东济南中乌新材料有限公司合成无色HPHT钻石样品进行了宝石学及光谱学测试。结果表明,10粒无色圆钻形抛光样品颜色级别可达到D—E,净度级别为VS及以下,含有金属包裹体并可被磁铁吸引,正交偏光显微镜下具有低干涉色和弱的异常双折射现象,而另10粒原石样品晶形主要为立方体和八面体聚形,可见部分(110)和(113)晶面,含金属包裹体,均可被磁铁吸引。紫外-可见吸收光谱数据显示弱的270nm处吸收;红外光谱测试显示所有样品为Ⅱa型,含有少量的B元素;虽然激光拉曼光致发光光谱测试未检测到特征的杂质发光峰,但在DiamondViewTM下可以观察到强蓝绿色磷光,清晰的八面体和立方体分区特征等最主要的鉴定特征。  相似文献   

9.
国内市场小颗粒无色高压高温合成钻石的鉴定特征   总被引:1,自引:0,他引:1  
2015年,国家珠宝玉石质量监督检验中心(NGTC)深圳实验室先后在送检的镶嵌饰品中检测出多批次混杂在配镶副石中的无色小颗粒高压高温(HPHT)合成钻石,本文对这些饰品的特征进行了详细的测试和分析。结果表明,小颗粒高压高温合成钻石样品中可见Fe、Ni等金属包裹体,并大多具有磁性;红外光谱可检测到弱的2 802cm~(-1)跟B相关的吸收峰;钻石观察仪下可见蓝色-蓝绿色荧光的几何状生长分区以及强蓝色磷光;紫外-可见-近红外光谱可检测到与Ni相关吸收线(685,880nm);小颗粒钻石自动排查仪(AMS)测试结果均为"referⅡ型"或"refer"。虽然前人对无色高压高温合成钻石已有少量研究,但在实验室送检样品的配石中属首次发现,这应引起重视和警惕。  相似文献   

10.
由美国查塔姆公司近期推出的合成无色钻石的色级接近F,净度最高达SI1级,晶体主要由{ill}、{100}、{211}单形组成聚形,{110}单形一般发育不全。晶面上发育有特征的枝叶脉状生长花纹。吸收光谱测试结果表明,这种合成钻石晶格内几乎不含杂质氮原子,但存在少量的硼原子(2800cm-1),属Ⅱa~Ⅱb混合型。室温下,特征的紫外吸收峰出现在271nm处,紫外吸收限<235nm。在阴极射线的激发下,该合成钻石发射强蓝白荧光,并显示出独特的几何对称生长分区及镶嵌结构。阴极发光谱主峰位于432.5nm处,且伴随有弱的575系发光。与触媒剂成分相关的合金包裹体形态各异,主化学成分为Fe(65%~72%),次为Cu(10%~12%),并含不等量的S,Si等元素。提出在常规检测条件下鉴定查塔姆合成无色钻石的途径。  相似文献   

11.
天然黄水晶颜色金黄,犹如黄金,深受人们的追捧,市场上常出现紫水晶经加热处理得到的黄水晶。主要选取市场上常见的几种不同色调的紫水晶,通过加热处理实验,确定紫水晶的变色温度,并结合显微镜下观察、红外光谱和紫外-可见吸收光谱测试发现:紫水晶经过热处理后改色成黄水晶,可通过颜色、光泽、内部包裹体及表面特征与天然黄水晶进行辨别;热处理过程中,紫水晶随着温度的升高而改变颜色,由紫色到无色到黄色,且变色温度(400~500℃)与恒温时间长短有关;经热处理后的紫水晶在红外光谱带中存在3 854、3 738、3 585、3 436、2 675、2 362、2 233cm~(-1)处吸收峰并没有消失,天然黄水晶则不存在特征的3 585cm~(-1)处吸收峰;紫水晶在紫外吸收光谱中540nm处吸收强度随着温度的升高而降低。  相似文献   

12.
浅表层加色处理金色海水珍珠的谱学鉴别特征   总被引:1,自引:0,他引:1  
目前,国内珍珠市场中染色处理的金色海水珍珠的染料类型尚不明确,鉴别难度大。通过对一些浅表层加色处理金色海水珍珠样品的表面特征、紫外-可见光谱、拉曼光谱研究发现,浅表层加色处理金色海水珍珠的剖面特点与金色海水珍珠的一致,剖面珍珠层的颜色由内向外颜色变浅,同心环状分布,这与传统染色处理金色海水珍珠的剖面特征不同。浅表层加色处理金色海水珍珠的紫外-可见吸收光谱具有398nm处的吸收峰,是由人工染料造成的特殊吸收峰,具有鉴定意义;浅表层加色处理金色海水珍珠的拉曼光谱和金色海水珍珠的一致,且没有传统染色处理金色海水珍珠拉曼光谱的强荧光背景,可能是染料沉淀极少所致。  相似文献   

13.
测定了红河州不同地区野山茶的吸收光谱和三维荧光光谱。吸收光谱表明,五个产地的野山茶茶汤均在400nm以下有强吸收,蒙自野山茶的吸收光谱峰主要为235、282、324nm,而其余四地野山茶吸收峰在242、290、350nm附近。荧光光谱表明,各地茶汤均在400~500nm之间出现3个荧光主峰,其1号荧光峰为365~400nm/440~485nm,为黄酮类化合物的荧光峰,且老回龙地区的最强。2号和3号荧光峰也具有明显差异。通过对红河州等地野山茶的研究,利用三维荧光建立了相应的荧光指纹图谱。  相似文献   

14.
采用荧光光谱仪对多米尼加、墨西哥、缅甸三个产地蓝珀进行荧光光谱分析,旨在对比不同产地蓝珀的荧光光谱和发光特征.通过实验测试得到了蓝珀样品的光谱曲线及最佳激发光源、测试范围,分析了不同产地蓝珀的峰形、峰位及荧光强度与光谱平滑程度的关系.结果表明:不同产地蓝珀强荧光发射主要发生在可见光的蓝色区域.(1)多米尼加蓝珀的峰形为两个主峰及一个肩峰,分别位于450、474和507 nm附近,其中荧光为蓝色系列的多米尼加蓝珀两个主峰等高,荧光为蓝绿色系列的多米尼加蓝珀样品位于474 nm处主峰强度高于450 nm处;(2)墨西哥蓝珀的最佳激发光源不定,为一个多峰叠加的宽峰,主峰位于439 nm附近.但当样品荧光很强时出现两个分离峰,分别位于415、435 nm;(3)缅甸蓝珀的峰形和峰位与多米尼加蓝珀相似,主峰及肩峰分别位于450、475和508 nm附近,且450 nm主峰强度高于475 nm处,但荧光变弱时,最佳激发光源为399 nm,主峰位于433、451 nm;(4)不同产地蓝珀在相同光源照射条件下所呈现的荧光颜色及强度不同,所表现出的荧光光谱亦有差异.因此,蓝珀的荧光光谱可作为分析其荧光特征的研究手段之一.产生蓝色、蓝绿色荧光的原因,依据前人研究成果及本文的测试数据验证,发现主要是由芳香族化合物产生,初步推测为蒽、二萘嵌苯或其衍生物,不同产地蓝珀的荧光光谱存在差异,可能与引起荧光物质的相对含量及品种不同有关.  相似文献   

15.
板栗壳色素化学性质及结构的初步研究   总被引:4,自引:0,他引:4  
以板栗壳为材料,首先优化了板栗壳色素的纯化方法,在此基础上研究了纯化色素的化学性质、紫外-可见光谱及红外光谱。硅胶柱层析表明,优化的色素纯化方法简便有效。紫外-可见光谱分析表明:(1)色素甲醇溶液在紫外光区有两个明显的吸收峰,分别在218nm和264nm附近;(2)pH3.0、4.0条件下,紫外光区在218nm和264nm附近有明显的吸收峰,可见光区在480nm附近有小的吸收峰;(3)pH5.0、6.0条件下,紫外光区在218nm和272nm附近有明显的吸收峰,可见光区在510nm附近有小的吸收峰,中性及碱性条件下的光谱也具有相同特点。红外光谱分析表明,色素的主要吸收波数为3400、3145、3043、1715、1630、1400、1036和620cm-1。结合色素的化学性质鉴定,初步推断板栗壳色素含有苯环及酚羟基,而不具有典型黄酮类色素的结构。  相似文献   

16.
紫球藻生长周期可见光吸收光谱与生化变化   总被引:2,自引:0,他引:2  
测定紫球藻生长周期中活细胞可见光吸收光谱和代谢产物变化。结果表明 ,存在波长为43 0~ 44 5nm、5 5 5~ 5 65nm和 680~ 685nm 3个较大吸收峰 ,还存在 5 0 0~ 5 10nm和 62 0~ 63 0nm 2个次吸收峰。且波长为 44 0、5 60和 680nm时的光吸收值与细胞数成正比增长 ,可用于快速测定紫球藻培养液的细胞浓度  相似文献   

17.
目的建立简便、快速的餐饮废油、生物柴油以及合格食用油的鉴别检测方法。方法选择市售普通食用油、餐馆用油、生物柴油和餐饮废油(包括潲水油和煎炸老油)为研究对象,以1745 cm-1波数处的共有吸收峰为基准,比较各油脂红外光谱特征吸收峰相对强度;在230~800 nm范围内,比较各油脂的紫外可见吸收曲线,对油脂品质进行比较鉴别。结果比较红外图谱发现,各油脂在3473、3008、1652 cm-1附近对1745 cm-1的吸收峰相对强度差别较大,可以此作为判别依据;通过观察比较各油脂在紫外可见光谱图中的起始和终止吸收波长,以及在668 nm处是否有较高的吸光度或特征吸收峰,可对油脂品质进行鉴别。结论综合红外和紫外可见两种光谱方法的检测结果,本方法可初步地快速鉴别合格食用油与餐饮废油。  相似文献   

18.
蓝方石是方钠石族矿物中的一个稀有宝石品种,德国埃菲尔地区产的蓝方石有着非常独特而艳丽的蓝色,近年来被广泛地运用到国际珠宝品牌的高级定制中。本文对来自德国埃菲尔地区的宝石级蓝方石原石及刻面宝石样品进行了一系列常规宝石学测试,并运用能量色散型X射线荧光光谱仪、紫外-可见分光光度计、红外光谱仪及拉曼光谱仪等大型仪器进行测试分析。研究结果表明,蓝方石的折射率为1.50左右,相对密度2.42~2.48,手持分光镜下橙黄区有弱吸收带,长波紫外光下具有中-强的橙色荧光。除了Fe,Cu致色元素以外,不同价态的硫离子根(S3-,SO42-,S2-)也是导致其独特蓝色的主要原因之一。红外光谱在1 118、1 007、726、700、650、611、540、448cm-1处的吸收峰和拉曼光谱在448、545、989、1 089和1 628cm-1处的吸收峰为蓝方石的诊断性鉴别依据。  相似文献   

19.
最近,在北京珠宝市场上出现了大量的"金丝砗磲"。通过常规宝石学检测和紫外-可见光吸收光谱测试,对其进行了初步研究。结果表明,此种"金丝砗磲"并不是砗磲,而是一种海洋腹足纲类海螺贝经染色而成的饰品。该海螺贝呈螺旋状层状构造,可以通过其表面颜色不均、黄色部分不透明、黄色部分无荧光加以鉴别,也可以采用紫外-可见光分光光度计测试加以鉴别。  相似文献   

20.
本文采用多种方法对不同颜色的合成碳硅石的宝石学特征进行了研究,并与钻石及其仿制品?无色蓝宝石和立方氧化锆进行了对比,总结了其鉴定方法.合成碳硅石的相对密度为3.218;紫外荧光灯长波下为惰性至不同强度绿色荧光,短波下为惰性;彩色合成碳硅石的多色性明显.透视效应不可见黑线,显微观察可见后刻面棱重影和白色针状包体.热导仪和...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号