首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
锂离子电池用高容量负极材料普遍存在首次不可逆容量高、循环性能差等问题. 本文采用高温固相法制备了硅铝/碳锂离子电池负极材料, 制备出的复合负极材料的比容量远高于目前锂离子电池普遍使用的中间相碳微球, 循环寿命则优于同粒度的硅单体为活性中心的硅碳复合材料. Al引入Si/C复合材料中, 有效抑制了材料的首次嵌锂深度,且减缓了电压滞后现象. 制备的复合负极材料首次可逆容量达到600mAh/g, 首次充放电效率在85\%以上, 25次循环后容量仍保持90%以上.  相似文献   

2.
锂离子电池硅-碳负极材料的研究进展   总被引:1,自引:1,他引:0  
硅因具有大的比容量,极有希望成为下一代锂离子电池的主要负极材料。硅基负极材料工业化需其具备较高的比容量、良好的循环性能并能够进行工业生产。综述了硅-碳复合材料的研究进展,介绍了各类硅-碳复合物的制备方法、结构和电化学性能,提出制备低成本、性能稳定的硅-碳复合物将成为硅基材料研究的主导方向。  相似文献   

3.
硅基材料理论容量高、电位低、自然资源丰富,是最理想的锂离子电池负极材料。但是硅基负极在锂化和脱锂过程中巨大的体积变化,导致了硅基负极的循环稳定性与导电性差,阻碍了其实际应用。硅碳复合材料可将碳材料的高导电性和机械性能与硅基材料的高容量和低电位的优势相结合。综述了硅碳负极材料的主要制备方法,总结了硅碳复合材料的结构设计,并对未来碳硅材料的研究工作进行了展望。  相似文献   

4.
亓鹏  朱丁  陈云贵 《功能材料》2012,43(5):657-659
采用湿法混料及高温热解法制备了锂离子电池用硅/石墨/碳复合负极材料,并研究了不同配方的复合材料结构及电化学性能。研究发现,硅含量为20%(质量分数)时,复合材料首次可逆容量为865mAh/g,循环30次后仍为757mAh/g,容量保持率可达88%,大大改善了硅基材料作为锂离子电池负极材料的电化学性能。  相似文献   

5.
碳负极材料是迄今为止综合性能最好的锂离子电池负极材料。通过对碳材料微观结构的设计,能够显著改善锂离子电池的能量密度、功率密度和循环寿命,适应新能源汽车对动力电池的要求。与传统石墨负极材料相比,硬碳具有嵌锂容量高、倍率性能好以及循环寿命长等优点。研究者通过改变碳源、优化制备工艺,相继制备了一系列结构独特性能优异的硬碳材料。基于硬碳基锂离子电池负极材料的最新研究进展,总结了以不同碳源制备硬碳材料的研究工作,并简要分析了硬碳的微观结构对材料嵌锂性能的影响。最后总结并指出了该领域亟待解决的问题以及未来的发展方向。  相似文献   

6.
硅作为锂离子电池负极材料具有极高的比容量,被认为是最有应用潜力的下一代锂离子电池负极候选材料。本文系统总结了硅负极材料的电化学储锂特性和储锂机理,分析了硅负极材料存在的主要问题及原因。针对存在的问题,从嵌脱锂过程硅材料粉化调控、稳定固体电解质界面膜(SEI膜)的构建和硅材料导电性调变3方面对硅负极材料的电化学改性进展进行了评述,并指出了硅负极储锂材料今后的研究方向。  相似文献   

7.
用氧化、复合技术改善锂离子电池负极材料性能   总被引:3,自引:0,他引:3  
综述了最近几年用氧化、复合技术改善锂离子电池负极材料性能的研究.采用氧化技术,石墨材料的表面结构改善,可逆容量增加,循环性能明显改善;直接制备使用纳米级氧化物,显示出可逆容量大及优良的循环性能和快速充放电能力.采用复合技术,可使碳材料、氧化物材料的结构、可逆容量、循环性能得到改善或提高.氧化技术和复合技术是进一步提高锂离子电池负极材料性能的有效方法.  相似文献   

8.
将锂离子电池材料尺寸减小到纳米尺度,可减小充放电过程中Li+迁移距离及电极材料的相对膨胀率,是一种有效提升锂离子电池性能的手段。但是,纳米化也会带来导电率低、表面副反应活性高、团聚倾向大等明显缺点。在负极活性材料中引入导电复合相,可以有效提升材料体系的导电性、储锂容量、倍率特性和循环稳定性,是解决现有技术难题的有效突破口之一。对近年锂离子电池负极材料研究方面的主要成果进行了综述,着重关注几种热点负极材料及其新型微结构的设计、实现与性能优化研究。以可控制备工艺为主线,总结了相关的研究成果。  相似文献   

9.
锂离子电池被认为是富有前途的能源储存器件,寻找高性能锂电池新材料已成为全世界的研究热点。MXenes材料是一种新型过渡金属碳化物、氮化物或碳氮化物二维纳米材料的统称,具有比表面积大、导电性能好、储锂容量较高、循环和倍率性能优异等特点,是一种具有光明应用前景的锂离子电池材料。本文对MXenes材料在锂离子电池应用研究中的重大突破进行了综述,介绍了其制备方法、结构性能、储锂机理,归纳了其在锂离子电池中的具体应用及机制,分析了当前存在问题。综述指出MXenes材料研究,应利用其自身亲水性和导电性优势,在复合电极材料、自支撑电极材料等方面重点部署,为高性能锂子电池关键技术带来突破。  相似文献   

10.
锂离子电池硅基负极材料的理论比容量比传统石墨材料高10倍, 是最有前途的锂离子电池负极材料之一。然而硅基纳米材料的制备工艺复杂、成本高昂, 严重限制了锂离子电池硅负极的商业应用。本工作采用溪木贼为原料, 通过深度还原、浅度氧化和碳包覆工艺制备了三维多孔生物质硅/碳复合材料(多孔3D-bio-Si/C)。三维多孔结构不仅有利于Li+的快速传输, 而且提供足够的空隙缓解在脱-嵌锂过程中发生的体积变化。得益于三维结构中大量的孔隙和高强度的外部碳层, 多孔3D-bio-Si/C制备的电极表现出优异的电化学性能。当电流密度为1 A/g时, 多孔3D-bio-Si/C的可逆容量为1243.2 mAh/g, 循环400次后仍可保持933.4 mAh/g, 容量保持率高达89%。利用溪木贼作为生物质硅源制备高性能硅基负极材料, 实现了低成本、可规模化、绿色和可持续的合成路线, 有望为Si基锂离子电池负极材料的商业应用打下基础。  相似文献   

11.
锂离子电池硅基负极改性研究新进展   总被引:1,自引:1,他引:0  
硅因其具有极高的理论容量而成为现阶段锂离子电池用负极材料研究的热点。介绍了硅基负极材料嵌/脱锂的原理,总结了目前缓解硅开裂与粉碎的一般方法,分析了现行研究中的不足。聚吡咯具有高导电性、高弹性、多孔、高稳定性等优点,为了提高负极材料循环稳定性能,将其与硅结合得到的Si-PPy复合材料将是最有希望的发展方向。  相似文献   

12.
徐立环  汪佳男  苏畅 《功能材料》2023,(12):12091-12098
硅碳材料作为锂离子电池负极材料具有广阔地发展前景。利用水热法和高温碳化法制备了蔗糖碳/硅复合材料(SC/Si),并在此基础上与石墨复合制备出具有石墨导电骨架结构的蔗糖碳/硅-石墨复合材料(SC/Si-Gr),并探究其作为锂离子电池负极材料电化学和电池性能。结果表明,蔗糖碳均匀包覆在纳米硅表面,形成的蔗糖碳/硅复合材料的电化学性能和电池性能随着蔗糖碳含量增加而提高。随着石墨的引入,构建的SC/Si-Gr三元复合材料的电化学性能得到进一步提升。当蔗糖:硅:石墨投料质量比为1∶1∶0.5时,形成的SC/Si-Gr(1∶1∶0.5)复合材料,在电流密度为0.1 A/g条件下,第三圈稳定之后的放电比容量为1 005.1 mAh/g;循环100圈之后放电比容量为819 mAh/g,充放电库伦效率保持在98%左右。在1 A/g大电流密度下,平均放电比容量为437.91 mAh/g。这归功于石墨的加入形成有效的导电骨架结构,提高了首次循环库伦效率,加速锂离子的传输速率,使蔗糖碳/硅-石墨复合材料呈现出良好的循环稳定性和充放电倍率性能。  相似文献   

13.
Si作为一种新型锂离子电池负极材料,具有理论比容量高、来源丰富、成本低廉、安全性能好等优点,近年来备受关注。但其在充放电过程中会产生巨大的体积变化而使得材料粉化严重,导致循环过程中容量迅速衰退,难以满足实用化的需求。纳米化和合金化是改善Si负极材料的有效途径,纳米化能够有效缓解材料嵌脱锂过程中体积变化造成的机械应力、缩短锂离子的迁移距离,从而明显改善Si基材料的电化学循环稳定性能;合金化可以减小材料在脱嵌锂过程的体积变化率、提高材料的电导率,也可以延长Si基材料的循环寿命。此外,Si合金的振实密度高、制备工艺简单,有利于规模化应用。在简要综述最近5年在Si基锂离子电池负极材料的纳米化和合金化方面的研究进展的同时,重点关注了不同纳米结构和合金化方法对其电化学储锂容量、倍率性能和循环稳定性能的影响。  相似文献   

14.
杨婷  胡新宇  王文磊 《材料导报》2021,35(8):7-10,16
ZnO作为锂离子电池负极材料存在循环稳定性和倍率性能不理想的问题.为了提升ZnO的储锂性能,科研工作者尝试对其进行改性研究,包括结构优化和材料复合改性,但通常存在制备过程较复杂的问题.本实验采用简单的高温热解法,利用硬脂酸锌为前驱体,通过在惰性气氛中高温热解,直接制备了氧化锌@三维网状碳复合材料(ZnO@C).随后,利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、拉曼光谱仪(Raman)、热重分析仪(TGA)等表征方法对该复合材料进行物性表征,并探讨其原位生长过程.作为锂离子电池负极材料,ZnO@C表现出较好的循环稳定性和倍率性能,当电流密度为100 mA/g时,60次循环后其仍具有369 mAh/g的可逆容量.ZnO@C较好的储锂性能主要归因于其独特的结构,穿插于ZnO颗粒中的三维网状碳不仅能增强材料的导电性,提升电极倍率性能,同时,ZnO颗粒与碳之间的空隙也可有效缓解ZnO在充放电过程中因体积膨胀/收缩而带来的电极材料粉化问题,改善电极循环稳定性.  相似文献   

15.
随着环境问题和能源问题的日益突出,传统汽车逐渐走向新能源化。锂离子电池具有放电电压平台高、自放电小、环境友好等优点,被认为是最有前景的新能源汽车动力之一。然而,随着人们对新能源汽车续航能力要求的逐渐提高,进一步提高汽车动力电池的能量密度成为当今社会研究的热点。目前,商业化车用动力锂离子电池的正极材料以磷酸铁锂(LiFePO_4)和三元材料(Li(Ni_xCo_yMn_(1-x-y)) O)为主,负极以石墨为主,其能量密度仅为200~300 Wh·kg~(-1)。因此,提高汽车动力电池的能量密度,研发高能量密度的正负极材料是动力电池的研究方向之一。硅具有4 200 mA h·g~(-1)的超高理论比容量,是制备车用高能量密度型锂离子电池最有前景的负极材料之一。然而,硅在充放电反应中的剧烈体积变化严重阻碍了其商业应用。硅采用合金化反应方式储存锂离子,合金化反应在提供高比容量的同时伴随着300%的体积膨胀。剧烈的体积变化导致活性物质脱落、SEI膜持续形成等问题,进而导致实际使用时电池容量的快速衰减。此外,纯硅属于半导体,本征载流子浓度很低,无法满足电极对导电性的要求。解决上述问题最常用的方法有以下三种:(1)硅的纳米化。锂离子在固体中的扩散较为困难,在外加电场作用下,锂离子在硅中的扩散速度依然很慢。通过硅纳米化的方式可以缩短锂离子从硅表面到中心的扩散距离,有效缩短电池充电时间。(2)硅/碳复合。碳材料具有良好的循环稳定性和导电性,将硅与碳复合,碳可以缓冲硅在合金化反应中剧烈的体积变化,提高整个负极的电子电导率,外层碳壳能阻止硅和电解液的直接接触,形成稳定的SEI膜。(3)微观结构设计。中空核-壳结构、3D多孔结构等特殊结构可以缓解硅的体积膨胀效应,有效抑制电极材料的脱落。研究中经常综合使用上述三种方法来制备高性能纳米硅/碳负极材料,如3D多孔纳米硅/碳材料、中空核-壳纳米硅/碳材料等。本文先阐述了硅锂合金的电化学反应机理与容量衰减的原因,以及纳米硅的制备方法,然后从表面包覆、结构制备、掺杂、MOFs改性等方面对硅/碳复合材料的常见修饰方法进行了综述,并进一步分析了中空核-壳结构、多孔结构等在提高电化学性能上的优势。最后,本文总结了纳米硅/碳作为负极材料的优点与当前遇到的问题,归纳并分析了不同包覆材料、不同包覆方法和不同离子掺杂带来的性能差异及原因,提出未来纳米硅/碳产业化道路上的关键突破点,并展望了其在纯电动汽车领域的应用前景。  相似文献   

16.
锂离子电池硅基负极材料由于具有高的理论比容量,低的脱嵌锂电位,与电解液反应活性低等优点而成为研究热点。本文综述了近年来硅基材料作为锂离子负极材料的研究进展,包括纳米硅、硅基薄膜、硅-金属复合材料、硅-碳材料,分析硅基材料作为锂离子电池负极材料的研究前景和发展方向。  相似文献   

17.
《功能材料》2021,52(8)
硅基材料作为锂离子电池负极的理论容量达到4 200 mAh·g~(-1),被认为是最有发展前景的负极材料。但其体积膨胀过大,导致循环稳定性较差。通过球磨+碳包覆的方法,对线切割的纳米片层状多晶硅硅泥进行改性,使其作为锂离子电池负极材料的电化学性能得到了改善。结果表明,球磨使原料硅泥粒径明显减小。在电流密度为200 mA·g~(-1)时,原料硅泥球磨20 h后碳包覆的C-Si_(20)的首次充电比容量为1 784.2 mAh·g~(-1)。循环75次后充电比容量为640 mAh·g~(-1),充放电库伦效率保持在98%以上。材料具有比较好的循环性能,可以为光伏产业硅泥废料的回收再利用提供一定的借鉴意义。  相似文献   

18.
石墨化碳具有充放电容量高、循环性能稳定等特点,是最有商业应用价值的锂离子电池负极材料之一,所以改性的碳负极材料一直是研究的重点.用TEM,HRTEM对用电弧放电法制备的纳米碳颗粒进行结构表征,并将其用作锂离子电池负极材料研究其电化学性能.研究结果表明,纳米碳颗粒负极具有较高的初次充电容量,达到了710mAh/g.但是初次放电效率低,不可逆容量损失大,在锂离子电池应用上还存在很多缺陷.必须对其加以改善使之成为一种较好的锂离子电池负极材料.  相似文献   

19.
硅材料在锂离子电池中的应用研究进展   总被引:2,自引:1,他引:1  
硅材料作为锂离子电池负极材料具有比容量大的优点,是高容量锂离子负极材料的研究热点之一.综述了近年来锂离子电池硅负极材料的研究进展.分别对硅及含硅材料作为锂离子电池负极材料的发展过程、充放电特性、储锂机理及影响其储锂的各因素进行了分析和总结,并对其存在的问题进行了分析.探讨了采用不同复合物、不同制备方法和合成硅化物等改性方法来提高其循环性能的可行性.指出纳米硅基复合物将是硅负极材料最有希望的发展方向.  相似文献   

20.
硅理论比容量高, 放电平台低, 是商业化锂离子电池石墨负极的替代材料之一, 但是其充放电循环中体积变化大, 容量衰减迅速, 制约了其商业化使用。本研究通过一步法制备了具有核壳结构的硅@碳/硅氧化物(Si@C/SiOx), 将其作为锂离子电池负极材料。采用SEM、TEM、XRD、XPS等手段对所制备材料的微观形貌、结构以及组分进行了分析, 并对其进行了相关的电化学测试。结果表明, Si@C/SiOx核壳材料比Si@C核壳材料具备更优良的电化学性能。在200 mA/g电流密度下, 循环45次后, Si@C的容量保持率为60.2%; 而当C/SiOx作为Si核外壳时, 200 mA/g电流密度下, 循环45次后, Si@C/SiOx比容量值为787.2 mAh/g, 容量保持率提高到87.3%。这主要是由于C与SiOx复合后, 外壳的机械强度大于碳壳, 能够较好地缓冲Si体积膨胀产生的巨大应力, 从而保证结构的完整性, 提高了硅基负极材料的商业化应用的可能性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号