首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An ultra compact triplexing filter was designed based on a silicon on insulator(SOI) nanowire arrayed waveguide grating(AWG) for fiber-to-the-home FTTH.The simulation results revealed that the design performed well in the sense of having a good triplexing function.The designed SOI nanowire AWGs were fabricated using ultraviolet lithography and induced coupler plasma etching.The experimental results showed that the crosstalk was less than -15 dB,and the 3 dB-bandwidth was 11.04 nm.The peak wavelength output from ports a,c,and b were 1455,1510 and 1300 nm,respectively,which deviated from our original expectations.The deviation of the wavelength is mainly caused by 45 nm width deviation of the arrayed waveguides during the course of the fabrication process and partly caused by material dispersion.  相似文献   

2.
秦政坤  马春生 《半导体学报》2008,29(12):2307-2310
通过减少奇数阵列波导的芯宽度,同时增加偶数阵列波导的芯宽度的技术,构造了箱型光谱. 选用氟化聚芳醚FPE聚合物材料,设计并制备了17×17信道箱型光谱响应阵列波导光栅(AWG)波分复用器. 测试结果表明,器件的中心波长为1550.87nm,波长间隔为0.8nm, 3dB带宽约为0.476nm,串扰低于-21dB,插入损耗为13~15dB.  相似文献   

3.
通过减少奇数阵列波导的芯宽度,同时增加偶数阵列波导的芯宽度的技术,构造了箱型光谱-选用氟化聚芳醚FPE聚合物材料,设计并制备了17×17信道箱型光谱响应阵列波导光栅(AWG)波分复用器.测试结果表明,器件的中心波长为1550.87nm,波长间隔为0.8nm,3dB带宽约为0.476nm,串扰低于-21dB,插入损耗为13~15dB.  相似文献   

4.
秦政坤  马春生 《半导体学报》2008,29(9):1804-1807
选用氟化聚芳醚FPE聚合物材料,设计并制备出了17×17信道光谱响应平坦化阵列波导光栅(AWG)波分复用器. 实验测试结果表明,器件的中心波长为1550.83nm,波长间隔为0.8nm, 3dB带宽约为0.476nm,插入损耗为13~15dB,串扰低于-21dB.  相似文献   

5.
The characteristics of a wavelength multiplexer based on an arrayed-waveguide grating are carefully investigated by using the grating theory and related experiments. A 28-channel multiplexer is designed and fabricated as SiO2-Ta2O5 waveguides on a 1 cm×2 cm substrate. The designed wavelength channel spacing of 1 nm is obtained. The crosstalk to an adjacent channel is -15 dB. The measured minimum loss is 4.2 dB, which is composed of 3.4 dB excess loss and 0.8 dB grating loss  相似文献   

6.
The optimized configuration of an N-channel frequency-selective 2×2 switch based on an arrayed-waveguide grating (AWG) (2N+1)×(2N+1) multiplexer is proposed that offers significant crosstalk reduction and loss-imbalance equalization. The optimization is achieved by employing fold-back optical paths instead of loop-back paths. A switch constructed with a silica-based AWG 16×16 multiplexer demonstrates coherent crosstalk of less than -30 dB in the transmitting frequency-division-multiplexed (FDM) channels; the gain in optimization is more than 15 dB. The largest loss-difference among the seven FDM channels is simultaneously reduced from 4.5 dB to 1.6 dB. These improvements will extend the cascadable number of nodes in all-optical FDM networks  相似文献   

7.
A semiconductor optical amplifier, a grating demultiplexer and a photodiode array were integrated in InGaAsP/InP to form a WDM receiver chip. 10 wavelength channels (TE or TM polarisation) in the 1.54 μm wavelength region with a channel spacing of 2 nm were detected with a crosstalk of less than -20 dB and a responsivity of up to 8 A/W  相似文献   

8.
Polarization independent InP WDM multiplexer/demultiplexer module   总被引:6,自引:0,他引:6  
We report the design, fabrication, packaging, and characterization of a polarization independent integrated optical InP multiplexer/demultiplexer module. The device is based on a vertically etched diffractive grating and separates four channels with 4 spacing in the 1.55 μm window. An n-/n+-InP layer structure with very low birefringence results in a shift of the passbands between transverse electric (TE) and transverse magnetic (TM) polarization of less than 0.1 nm. With a self-aligned flip-chip mounting technique light is optically coupled from the input and output waveguides to an array of lensed single mode fibers with a coupling efficiency of more than 80%. The packaging includes temperature control that allows fine tuning of the channel passbands over 5 nm. Optical crosstalk is always better than -17 dB and fiber to fiber losses of 15 dB are achieved. The module has been successfully implemented in a 4×2.5 Gb/s WDM transmission system  相似文献   

9.
设计、仿真并制备了一种用于光纤布拉格光栅(FBG)解调的阵列波导光栅(AWG)芯片。该芯片基于SOI衬底进行制备,并在AWG的输入/输出波导、阵列波导与平板波导之间采用双刻蚀结构进行优化。经仿真,该AWG的插入损耗为1.5dB,串扰小于 -20dB,3dB带宽为1.5nm。优化后的AWG芯片采用深紫外光刻技术、电感耦合等离子体等技术制备。经测试,该AWG的插入损耗为3dB,串扰小于 -20dB,3dB带宽为2.3nm。搭建了基于该AWG的解调系统,解调实验结果表明,该系统在0.8nm范围内的解调精度可达11.26pm,波长分辨率为6pm。  相似文献   

10.
赵雷 《光电子.激光》2010,(11):1589-1592
设计了基于绝缘层上硅(SOI)材料的8通道Si纳米线阵列波导光栅(AWG),器件的通道间隔为1.6nm,面积为420μm×130μm。利用传输函数法模拟了器件传输谱,结果表明,器件的通道间隔为1.6nm,通道间串扰为17dB。给出了结合电子束光刻(EBL)和感应耦合等离子(ICP)刻蚀技术制备器件的详细流程。光谱测试结果分析表明,器件通道间隔为1.3~1.6nm,通道串扰为3dB,中心通道损耗为11.6dB。  相似文献   

11.
We describe the results of a holographic demultiplexer (DeMux) focused on the low polarization-dependence loss (PDL) using long-period volumetric diffraction grating. A 0.8-nm-spaced 21-channel holographic DeMux with PDL of less than -0.38 dB, channel uniformity of 0.495 dB, and channel crosstalk of -13 dB has been demonstrated  相似文献   

12.
A wavelength multiplexer or demultiplexer plays ani mportant role in all wavelength division multiplexing( WDM) system.Silica-basedarrayed waveguide gratings(AWGs) offer attractive featuresinthis area due to theadvantage of large output channels and lowlo…  相似文献   

13.
We present detailed modeling and experimental results for an improved design of an InGaAsP-InP wavelength demultiplexer based on a monolithically integrated Rowland circle grating. The design incorporated ten wavelength channels at 1.55 μm with a uniform spacing of 2 nm. The total on-chip loss was about 10 dB and the crosstalk between adjacent channels was as low as -25 dB. It was shown that low-loss etched turning mirrors can reduce the total on-chip loss by about 4 dB compared to traditional 90° curved multimode waveguides. By replacing standard flat grating facets with retro-reflecting V-shaped facets in the echelle grating, the loss was further reduced by 4 dB. Polarization independent operation within a passband of 0.5 nm was achieved by using multimode output waveguides. The potential sources producing the crosstalk have been analyzed and fabrication modifications for further improvement are suggested  相似文献   

14.
A 16 channel arrayed waveguide grating demultiplexer with 200 GHz channel spacing based on Si nanowire waveguides is designed.The transmission spectra response simulated by transmission function method shows that the device has channel spacing of 1.6 nm and crosstalk of 31 dB.The device is fabricated by 193 nm deep UV lithography in silicon-on-substrate.The demultiplexing characteristics are observed with crosstalk of 5-8 dB,central channel’s insertion loss of 2.2 dB,free spectral range of 24.7 nm and average channel spacing of 1.475 nm.The cause of the spectral distortion is analyzed specifically.  相似文献   

15.
A 45-channel 100 GHz arrayed waveguide grating (AWG) based on Si nanowire waveguides is designed, simulated and fabricated. Transfer function method is used in the spectrum simulation. The simulated results show that the central wavelength and channel spacing are 1 562.1 nm and 0.8 nm, respectively, which are in accord with the designed values, and the crosstalk is about ?23 dB. The device is fabricated on silicon-on-insulator (SOI) substrate by deep ultraviolet lithography (DUV) and inductively coupled plasma (ICP) etching technologies. The 45-channel 100 GHz AWG exhibits insertion loss of 6.5 dB and crosstalk of ?8 dB. This work has been supported by the National High Technology Research and Development Program of China (No.2015AA016902), and the National Natural Science Foundation of China (Nos.61435013 and 61405188). E-mail:zhangjiashun@semi.ac.cn   相似文献   

16.
The crosstalk in arrayed-waveguide grating multiplexers with a channel spacing of 10 GHz is reduced by compensating for the phase errors after fabrication. We used the thermooptic effect realized with a thin-film heater and the photoelastic effect obtained with amorphous silicon film, respectively, for dynamic and static phase-error compensation. These two methods were applied to confirm the principle and to realize a stable, stand-alone device, respectively. We have achieved a crosstalk of less than -35 dB for the TE polarization mode in a 16×16, 10 GHz-spacing arrayed-waveguide grating by using these two phase-error compensation techniques. Static phase-error compensation results in a stable multiplexer which features a low crosstalk of less than -30 dB for one of the two polarization modes of all the channels without any external control equipment  相似文献   

17.
基于硅纳米线波导的16通道200GHz阵列波导光栅   总被引:1,自引:0,他引:1  
设计了基于硅纳米线波导的16通道,通道间隔为200GHz的阵列波导光栅(AWG)。传输函数法模拟了器件传输谱,结果表明器件的通道间隔为1.6nm,通道间串扰为31dB。器件利用SOI材料,由193nm深紫外光刻工艺制备。光谱测试结果分析表明,通道串扰为5-8dB,中心通道损耗2.2dB,自由光谱区长度24.7nm,平均信道间隔1.475nm。详细分析了器件谱线畸变的原因。  相似文献   

18.
Arrayed waveguide grating (AWG) is a key device in wavelength-division multiplexing (WDM) system, and the flat spectral response of the AWG device is required. In this paper, the RIE process has been improved. By using the steam- redissolution technique, the insertion loss and the crosstalk have been reduced. Experimental results show that the central wavelength is 1550.86nm, and 3-dB bandwidth is about 0.478 nm, insertion loss is 10.5 dB, crosstalk is about –22 dB. The insertion loss of an AWG device is reduced by about 3 dB for the central channel and 4.5 dB for the edge channels, and the crosstalk is reduced by 2.5 dB after the steam- redissolution.  相似文献   

19.
Arrayed waveguide grating (AWG) is a key device in the wavelength-division multiplexing (WDM) system, and the flat spectral response of the AWG device is required. In this paper, the RIE process has been improved. By using the steam-redissolution technique, the insertion loss and the crosstalk have been reduced. Experimental results show that the central wavelength is 1550.86 nm, the channel spectral response flatness is about 1.5 dB, 3-dB bandwidth is about 0.478 nm, insertion loss is 10.5 dB, and crosstalk is about-22 dB. The insertion loss of an AWG device is reduced by about 3 dB for the central channel and 4.5 dB for the edge channels, and the crosstalk is reduced by 2.5 dB after the steam- redissolution.  相似文献   

20.
Arrayed waveguide grating(AWG) is a key device in the wavelength-division multiplexing(WDM) system, and the flat spectral response of the AWG device is required.In this paper,the RIE process has been improved.By using the steam-redissolution technique,the insertion loss and the crosstalk have been reduced.Experimental results show that the central wavelength is 1550.86 nm,the channel spectral response flatness is about 1.5 dB,3-dB bandwidth is about 0.478 nm,insertion loss is 10.5 dB,and crosstalk is abo...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号