首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fabrication of the first metal-semiconductor-metal photodetectors on Hg/sub 1-x/Cd/sub x/Te is reported using MOCVD grown layers on GaAs substrates. An epitaxial CdTe overlayer has been incorporated in the device structure for the enhancement of Schottky barrier characteristics. The interdigitated devices (2.3 mu m electrode width, 3.3 mu m spacing) exhibited a breakdown voltage of -60 V and responsivities of more than 1.0 A/W at a wavelength of 1.3 mu m and bias voltage of 40 V. Over the range of bias voltage examined, the dark leakage current of the detectors was dependent on the choice of contact metal, with minimum values of 10 nA at <1 V for Pt/CdTd/Hg/sub 1-x/Cd/sub x/Te.<>  相似文献   

2.
A newly designed inverted delta-doped V-shaped GaInP/InxGa1-xAs/GaAs pseudomorphic high electron mobility transistor (PHEMT) has been successfully fabricated and studied. For a 1×100 μm2 device, a high gate-to-drain breakdown voltage over 30 V at 300 K is found. In addition, a maximum transconductance of 201 mS/mm with a broad operation regime for 3 V of gate bias (565 mA/mm of drain current density), a very high output drain saturation current density of 826 mA/mm, and a high DC gain ratio of 575 are obtained. Furthermore, good temperature-dependent performances at the operating temperature ranging from 300 to 450 K are found. The unity current gain cutoff frequency fT and maximum oscillation frequency fmax up to 16 and 34 GHz are obtained, respectively. Meanwhile, the studied device shows the significantly wide and flat gate bias operation regime (3 V) for microwave performances  相似文献   

3.
Dependence of 1/f noise on the body-to-source junction bias voltages (VBS) between -2.5 and 0.5 V for 0.25-μm NMOS transistors is reported. In subthreshold, 1/f noise is reduced by about one order of magnitude, when the body-to-source junction is forward biased by 0.5 V (VBS) compared to that for VBS=0 V, which is due to increased depletion layer capacitance as well as possibly due to an increased average distance between oxide traps and carriers caused by the forward bias. On the contrary, in strong inversion, 1/f noise remains almost constant for the entire VBS range  相似文献   

4.
The current–voltage characteristics of GaAs/InxGa1−xAs/AlAs resonant tunneling diodes (RTDs) are a function of stress, and the current–voltage changes of RTDs with stress are attributed to the piezoresistive effect in RTDs. In order to study the piezoresistive effect in RTDs for application in micromachined mechanical sensors, the beam-mass structure based on RTDs is designed, fabricated and tested by the Wheatstone bridge test circuit. The test results show that the piezoresistive sensitivity of RTDs can be adjusted through the bias voltage, and the maximal piezoresistive sensitivity of RTDs with bias voltage at 0.618 V is 7.61×10−11 Pa−1, which is two orders higher than the minimal piezoresistive sensitivity (2.03×10−13 Pa−1) of RTDs with bias voltage at 0.656 V, and is also higher than the piezoresistive sensitivity of silicon material (5.52×10−11 Pa−1).  相似文献   

5.
An anisotype heterojunction field-effect transistor (A-HJFET) for GaAs digital integrated circuit applications is proposed. A thin, highly doped, strained InxGa1-xAs (x⩽0.2) n-channel is employed for improved transconductance while a p+-GaAs cap is used to enhance the dynamic gate voltage range of the device. Prototype devices with 5-μm gate lengths show a maximum transconductance of 80 mS/mm at Vds=2 V and a forward gate bias voltage of up to +2 V without significant leakage current  相似文献   

6.
Electrically tunable solidly mounted thin film bulk acoustic resonators based on BaxSr1-xTiO3 films are reported for the first time. The films are acoustically isolated from the silicon substrate by a Bragg reflector stack. Applying DC bias induces piezoelectric effect and an acoustic resonance at approximately 4 GHz. Under 10 V applied DC bias the resonance frequency of the resonators based on Ba0.25Sr0.75TiO3 films is tuned 1.2% to lower frequencies. The Q-factor of these resonators is approximately 120, and the electromechanical coupling coefficient is 0.5%. The resonant frequency of the BaTiO3 based resonators shifts upwards 1.3% under 10 V DC bias, and the -factor is approximately 30, with an electromechanical coupling coefficient of 6.2%.  相似文献   

7.
The fabrication of silicon heterojunction bipolar transistors which have a record unity-current-gain cutoff frequency (fT) of 75 GHz for a collector-base bias of 1 V, an intrinsic base sheet resistance (Rbi) of 17 kΩ/□, and an emitter width of 0.9 μm is discussed. This performance level, which represents an increase by almost a factor of 2 in the speed of a Si bipolar transistor, was achieved in a poly-emitter bipolar process by using SiGe for the base material. The germanium was graded in the 45-nm base to create a drift field of approximately 20 kV/cm, resulting in an intrinsic transit time of only 1.9 ps  相似文献   

8.
We report the growth, fabrication and characterization of Al0.4Ga0.6N-Al0.6Ga0.4N back-illuminated, solar-blind p-i-n photodiodes. The peak responsivity of the photodiodes is 27 and 79 mA/W at λ≈280 nm for bias voltages of 0 V and -60 V, respectively, with a UV-to-visible rejection ratio of more than three decades (at 400 nm). These devices exhibit very low dark current densities (~5 nA/cm2 at -10 V). At low frequencies, the noise exhibits a 1/f-type behavior. The noise power density is S0≈5×10-25 A2/Hz at -12.7 V and the detectivity (D*) at 0 V is estimated to be in the range of 4×1011-5×1013 cm·Hz1/2 /W. Time-domain pulse response measurements in a front-illumination configuration indicate that the devices are RC-time limited and show a strong spatial dependence with respect to the position of the incident excitation, which is mainly due to the high resistivity of the p-type Al0.4Ga0.6 N layer  相似文献   

9.
The authors show that the Taylor-series coefficients of a FET's gate/drain I/V characteristic, which is used to model this nonlinearity for Volterra-series analysis, can be derived from low-frequency RF measurements of harmonic output levels. The method circumvents many of the problems encountered in using DC measurements to characterize this nonlinearity. This method was used to determine the incremental gate I/V characteristic of a packaged Aventek AT10650-5 MESFET biased at a drain voltage of 3 V and drain current of 20 mA. The FET's transconductance was measured at DC, and its small-signal equivalent circuit (including the package parasitics) was determined by adjusting its circuit element values until good agreement between calculated and measured S parameters was obtained. The FET was then installed in a low-frequency test fixture. Excellent results were obtained  相似文献   

10.
The reverse bias light emission originating at microplasmas was investigated in GaAs1-xPx diodes and compared with the forward bias emission. Both spectra were found to be almost identical and could be explained by the same radiative recombination processes. The presence of the strong electric field in the junction gave rise to the Franz-Keldysh effect manifested by the uniform shift (~3 meV) of the reverse bias emission towards longer wavelengths with the Stark effect broadening the free-exciton emission peak P1. Measurement of the shift indicated that the electric field responsible for this, though high (~103 V/cm), was considerably lower than that prevailing in the centre of the junction (~5×105 V/cm). This pointed to recombination and the concomitant radiation occurring at the edge of the depletion region, the high field in the centre of the junction inhibiting the recombination of electron hole pairs.  相似文献   

11.
报道了p-GaN/Al0.35Ga0.65N/GaN应变量子阱结构的肖特基紫外探测器的制备及性能.器件的测试结果表明,在p-GaN/Al0.35Ga0.65N/GaN双异质结中强烈的压电极化和Stark效应共同作用下使得器件在正偏和反偏时的响应光谱都向短波方向移动了10nm.零偏下器件在280nm时的峰值响应为0.022A/W,在反向偏压为1V时,峰值响应增加到0.19A/W,接近理论值.在正向偏压下器件则呈平带状态,并在283和355nm处分别出现了两个小峰.在考虑极化的情况下,通过器件中载流子浓度分布的变化解释了器件在不同偏压下的响应特性,发现p-GaN/Al0.35Ga0.65N/GaN中的极化效应对器件的响应特性影响很大,通过改变偏压和适当的优化设计可以使探测器在紫外波段进行选择性吸收.  相似文献   

12.
背照式AlGaN/GaN基PIN日盲型紫外探测器的研制   总被引:3,自引:3,他引:0  
利用MOCVD方法在蓝宝石(0001)衬底上生长PIN型AlGaN/GaN外延材料,研制出背照式AlGaN基PIN日盲型紫外探测器,用紫外光谱测试系统和半导体参数测试仪分别测得了器件的光谱响应和I-V特性曲线。测试结果表明,器件的响应范围为260~280 nm,峰值响应出现在270 nm处,在2.5 V偏压下的最大响应...  相似文献   

13.
Two technologies are demonstrated whereby high-Q, vertical-structure, abrupt-junction varactor diodes are monolithically integrated with 0.25-μm GaAs MESFETs on semi-insulating GaAs substrates for multifunction millimeter-wave monolithic circuit applications. Diodes with various anode sizes have been realized with measured capacitance swings of >2.1:1 from 0 V to -4 V and series resistances of approximately 1 Ω. Diodes having a zero bias capacitance of 0.35 pF have Q's of >19000 (50 MHz) with -4 V applied to the anode. Under power bias conditions, the MESFETs have a measured gain of >6 dB at 35 GHz with extrapolated values for f t and fmax of 32 GHz and 78 GHz, respectively. Using these technologies, a monolithic Ka-band voltage controlled oscillator (VCO) containing a varactor diode, a 0.25-μm GaAs MESFET, and the usual MMIC passive components has been built and tested. At around 31 GHz, the circuit has demonstrated 60-mW power output with 300 MHz of tuning bandwidth  相似文献   

14.
制备了耗尽型和增强型TEGFET,耗尽TEGFE单栅长1μm,其室温跨导g_m=90mS/mm;双栅栅长均为2μm。g_m=75mS/mm。双栅的结果优于本实验室相同结构与尺寸的离子注入型常规双栅MESFET与高掺杂沟道MIS结构肖特基势垒FET的实验结果。双栅耗尽型器件在77K下跨导增加到1.7倍。双栅增强型的TEGFET在室温0.6V栅偏压下,g_m=63mS/mm,在77K下增加到1.4倍。如器件中出现平行电导时,则器件性能退化,它不但使跨导降低,且随栅编压变化很大。文中讨论了这一现象。  相似文献   

15.
Stress effects on poly-Si PMOS devices are investigated, and stress is related to the improvement or degradation of PMOS on/off current ratio. P-channel polysilicon MOSFETs have been stressed in the saturation and off-state regimes. Both the drive (on) current and leakage (off) current can be either increased or decreased after particular bias stress. On/off current ratio can be decreased by a factor of 2 for a stress bias of VGS=VDS=-11 V, but can be increased by a factor of 50 for a stress bias of VGS=-2 V, VDS=-11 V. Two effects of bias stress have been identified in poly-Si PMOS devices for which the on/off current ratio can either be increased or decreased after stress bias depending on the value of stress bias VGS. These effects of room-temperature stress are proposed to be due to either trapping of hot electrons or hot-hole-induced donor-type interface state generation  相似文献   

16.
There remains a need to improve sub-1-V CMOS VLSIs with respect to variation in transistor behavior. In this paper, to minimize variation in delay and the noise margin of the circuits in processors, we propose several mixed body bias techniques using body bias generation circuits. In these circuits, either the saturation region of the current between source and drain (I/sub ds/) or the threshold voltage (V/sub t/) of PMOS/NMOS is permanently fixed, regardless of temperature range or variation in process. A test chip that featured these body bias generation circuits was fabricated using a 130-nm CMOS process with a triple-well structure. The mixed body bias techniques which keep the I/sub ds/ of the MOS in the decoder and I/O circuits of a register file fixed and maintain the V/sub t/ of the MOS in both the memory cell and domino circuits of the register file fixed resulted in positive temperature dependence of delay from -40 /spl deg/C to 125 /spl deg/C, 85% reduction of the delay variation compared with normal body bias (NBB) at V/sub DD/ = 0.8 V. In addition, the results using these techniques show a 100-mV improvement in lower operating voltage compared with NBB at -40 /spl deg/C on a 4-kb SRAM.  相似文献   

17.
The observation of negative differential resistance (NDR) and negative transconductance at high drain and gate fields in depletion-mode AlGaAs/InGaAs/GaAs MODFETs with gate lengths L g ~0.25 μm is discussed. It is shown that under high bias voltage conditions, Vds>2.5 V and Vgs>0 V, the device drain current characteristic switches from a high current state to a low current state, resulting in reflection gain in the drain circuit of the MODFET. The decrease in the drain current of the device corresponds to a sudden increase in the gate current. It is shown that the device can be operated in two regions: (1) standard MODFET operation for Vgs<0 V resulting in fmax values of >120 GHz, and (2) a NDR region which yields operation as a reflection gain amplifier for Vgs >0 V and Vds>2.5 V, resulting in 2 dB of reflection gain at 26.5 GHz. The NDR is attributed to the redistribution of charge and voltage in the channel caused by electrons crossing the heterobarrier under high-field conditions. The NDR gain regime, which is controllable by gate and drain voltages, is a new operating mode for MODFETs under high bias conditions  相似文献   

18.
大功率InGaAsP/GaAs量子阱半导体激光器的直流和1/f噪声性质   总被引:2,自引:1,他引:1  
对大功率InGaAsP/GaAs量子阱(QW)半导体激光器(LD)的直流(DC)特性和小注入下的低频噪声(LFN)特性进行了实验研究.DC检测发现,V-J和I dV/dI-I可以对LD的电流泄漏作出判断.LFN检测发现,小注入下的1/f低频电压噪声幅值Bv(I)∝I<'βv>.理论分析和老化实验均表明,电流指数βv与载流子输运和电流泄漏机制之间有很好的相关性,存在电流泄漏和无辐射复合的器件其|βv|较小,可靠性较差.  相似文献   

19.
A low phase-noise X-band monolithic-microwave integrated-circuit voltage-controlled oscillator (VCO) based on a novel high-linearity and low-noise composite-channel Al0.3Ga0.7N/Al0.05Ga0.95 N/GaN high electron mobility transistor (HEMT) is presented. The HEMT has a 1 mumtimes100 mum gate. A planar inter-digitated metal-semiconductor-metal varactor is used to tune the VCO's frequency. The polyimide dielectric layer is inserted between a metal and GaN buffer to improve the Q factor of spiral inductors. The VCO exhibits a frequency tuning range from 9.11 to 9.55 GHz with the varactor's voltage from 4 to 6 V, an average output power of 3.3 dBm, and an average efficiency of 7% at a gate bias of -3 V and a drain bias of 5 V. The measured phase noise is -82 dBc/Hz and -110 dBc/Hz at offsets of 100 kHz and 1 MHz at a varactor's voltage (Vtune)=5 V. The phase noise is the lowest reported thus far in VCOs made of GaN-based HEMTs. In addition, the VCO also exhibits the minimum second harmonic suppression of 47 dBc. The chip size is 1.2times1.05 mm2  相似文献   

20.
The low-frequency noise characteristics of p-n-p InAlAs/InGaAs heterojunction bipolar transistors (HBTs) were investigated. Devices with various geometries were measured under different bias conditions. The base noise current spectral density (3.11 /spl times/ 10/sup -16/ A/sup 2//Hz) was found to be higher than the collector noise current spectral density (1.48 /spl times/ 10/sup -16/ A/sup 2//Hz) at 10 Hz under low bias condition (I/sub C/=1 mA, V/sub EC/=1 V), while the base noise current spectral density (2.04 /spl times/ 10/sup -15/ A/sup 2//Hz) is lower than the collector noise current spectral density (7.87 /spl times/ 10/sup -15/ A/sup 2//Hz) under high bias condition (I/sub C/=10 mA, V/sub EC/=2 V). The low-frequency noise sources were identified using the emitter-feedback technique. The results suggest that the low-frequency noise is a surface-related process. In addition, the dominant noise sources varied with bias levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号