首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
焊点的疲劳性能是决定车身安全性和可靠性的重要因素. 对不同强度的DP780,DP980和DP1180双相钢焊点进行了检验,在疲劳试验机上进行了拉剪疲劳试验,获得了焊点的疲劳寿命曲线,分析了焊点显微组织、硬度与疲劳性能的关系. 并对焊点的疲劳失效进行了分析. 结果表明:母材性能对其焊点的疲劳性能有较大影响. 母材强度越高即马氏体含量越多,其疲劳性能越优异,三种材料的失效模式均是沿着焊点圆周断裂,裂纹在熔核与母材交界的热影响区萌生,且先贯穿板厚,贯穿板厚的裂纹作为二次裂纹源向板宽方向扩展直至断裂.  相似文献   

2.
针对不同强度的双相钢开展了疲劳特性分析,选取5种强度的双相钢开展了力学性能和微观组织对比分析;采用MTS 810液压多功能试验机进行了拉-压疲劳测试,获得了应力幅-疲劳寿命(S-N)曲线;对疲劳断口形貌和表面形貌进行了观察;分析了马氏体含量对双相钢疲劳断裂行为的影响;对不同碳含量的双相钢疲劳裂纹扩展速率进行了对比分析,并对裂纹形貌进行了观察,获取影响疲劳寿命的主要因素。结果表明,铁素体先于马氏体发生微观塑性变形而形成可能的裂纹源;随着双相钢强度级别的提高,马氏体含量不断提高,材料的疲劳极限也逐步提高,疲劳极限与马氏体含量之间呈现线性的变化关系;马氏体含量由4%提高到40%左右时,双相钢的疲劳极限提高了约57%;与高碳HC420/780DP相比,低碳HC420/780DP的裂纹扩展速率明显降低,主要由于马氏体岛分布更加弥散细小;低碳HC420/780DP的疲劳裂纹扩展速率比高碳HC420/780DP低。  相似文献   

3.
对1000 MPa级双相钢板进行了一系列疲劳试验,并对试验数据进行拟合处理,得出了双相钢的疲劳寿命经验公式,然后对疲劳断口进行了扫描分析。最终发现:在加载频率为8 Hz的拉-拉疲劳试验条件下,DP1000钢板的疲劳极限是680 MPa;双相钢的疲劳断裂主要是主裂纹扩展到一定程度后失稳断裂,二次裂纹萌生但未形成扩展。钢板的疲劳裂纹源与扩展区有明显的韧性断裂特征,瞬断区失稳发生脆性断裂。  相似文献   

4.
采用工频交流伺服焊枪进行QP钢的电阻点焊,探讨了焊接电流、焊接时间及电极压力对点焊接头熔核直径和拉剪强度的影响规律,并对焊接接头的显微组织和显微硬度进行了分析;采用液压伺服疲劳试验机对不同熔核直径的QP钢点焊接头进行了拉剪疲劳试验,获得了焊点的载荷寿命曲线,分析了焊点的裂纹扩展及失效形式。结果表明,接头熔核直径和拉剪强度随焊接工艺参数改变呈规律性变化,存在最佳值;熔核区组织为板条状马氏体;熔核直径对焊接接头的疲劳性能有影响但影响不大。  相似文献   

5.
热冲击条件下倒装组装微焊点的可靠性-寿命预测   总被引:4,自引:3,他引:1       下载免费PDF全文
田野  任宁 《焊接学报》2016,37(2):51-54
采用有限元模拟法分析在-55~125℃热冲击过程中倒装微焊点的失效情况,结合模拟及试验数据,根据以能量为基础的Darveaux寿命模型预测关键焊点的疲劳寿命. 结果表明,组装体边角焊点最易失效,裂纹形成在芯片侧焊盘附近的焊料基体中,由焊点的外侧向内侧扩展;根据裂纹平均生长速率和微焊点累积塑性应变能密度,计算获得微焊点Darveaux寿命模型参数K1,K2,K3及K4分别为1 648.96,-0.234 9,0.004 79及-0.700 4,边角微焊点的疲劳寿命为6171次循环.  相似文献   

6.
塑料封装球栅阵列器件焊点的可靠性   总被引:2,自引:0,他引:2  
对比了充胶和未充胶塑料封装球栅阵列(PBGA)器件在-40 ℃~125 ℃温度循环条件下的热疲劳寿命,采用光学显微镜研究了失效样品焊点的失效机制,并分析了充胶提高器件热疲劳寿命的机制.实验发现底充胶可使PBGA样品的寿命从500周提高到2000周以上,失效样品裂纹最先萌生于最外侧焊球中近硅芯片界面外边缘处,界面处焊料组织粗化及界面脆性金属间化合物Ni3Sn2和NiSn3相的生成均促使裂纹沿该界面从焊球边缘向中心扩展.PBGA焊点界面处裂纹的萌生和扩展是该处应力应变集中、焊料组织粗化以及生成脆性金属间化合物等各种金属学和力学因素共同作用的结果.  相似文献   

7.
对热轧组织为铁素体+马氏体(1号)、铁素体+贝氏体+部分马氏体(2号)的600 MPa级热轧双相钢进行了应力比为0.1的拉-拉高周疲劳试验,并对疲劳性能进行了对比分析。结果表明:1号双相钢的疲劳极限为433 MPa,2号双相钢的疲劳极限为413 MPa。两种双相钢的疲劳断口均由疲劳源区、扩展区和瞬断区组成,疲劳源出现在试样顶角或近表面处,低应力时为单一疲劳源,高应力时为多疲劳源。裂纹扩展区除了有大量的韧窝,还有第二相粒子、疲劳辉纹和二次裂纹等特征。低应力幅时1号试样的疲劳辉纹较窄,疲劳寿命高于2号试样;高应力幅时2号试样的韧窝较深,疲劳寿命高于1号试样。在拉-拉载荷作用下,1号试样的裂纹为沿晶扩展,2号为穿晶扩展。透射电镜观察结果表明:在相近的应力幅下,疲劳断口附近高密度的位错缠结阻碍了位错的进一步运动,从而提高了双相钢的疲劳性能。  相似文献   

8.
600MPa级高Al冷轧双相钢点焊接头断裂方式   总被引:1,自引:0,他引:1  
通过拉伸剪切试验以及对拉剪断口的微观组织和扫描电镜分析,研究了高Al冷轧双相钢点焊接头的断裂方式,并分析了接头断裂方式对接头力学性能的影响规律.研究结果表明,高A1冷轧双相钢的点焊接头主要有3种断裂方式,即:母材撕裂的焊点拔出、沿熔核边界的焊点拔出及界面断裂.3种不同的断裂方式分别代表了3种不同的裂纹萌生和扩展方式.此...  相似文献   

9.
超高强钢点焊结构疲劳试验分析   总被引:1,自引:1,他引:0       下载免费PDF全文
王晓光  宇慧平  李晓阳  陈树君 《焊接学报》2016,37(2):99-102,110
以超高强淬火钢22MnB5为母体的点焊结构为研究对象,分别通过恒压和锻压工艺,利用光学显微镜,运用成组法进行了疲劳试验测试分析,结果表明,锻压和恒压二种工艺的p-S-N曲线显示出前者比后者工艺的疲劳寿命分散性略大及两种工艺的断裂模式基本相同,裂纹在焊核与热影响区交界处发生,并进一步向两侧较对称扩展至母材区,成为裂纹起裂点.异种母材与同种母材的试样发生疲劳断裂的位置相同,均为焊核与内层热影响区的交界处,异种母材的试样在裂纹扩展形态具有不对称性,疲劳失效均发生在低碳钢焊核处,得到三种应力等级下焊点的疲劳寿命变化曲线.  相似文献   

10.
在25 ℃下利用单轴微力疲劳试验机对96.5Sn-3Ag-0.5Cu无铅焊点进行不同驻留时间(1~20 s)和不同应变速率(0.01~0.08 mm/s)条件下的低周疲劳试验. 结果表明,在25 ℃下1~20 s的驻留时间对焊点的疲劳寿命影响不大;随着应变速率的加快,焊点的疲劳寿命逐渐降低,断裂机制逐渐由延性断裂向脆性断裂转变. 不同应变速率条件下的疲劳裂纹主要在焊点边缘钎料与金属间化合物(IMC)之间的界面处萌生,并在近IMC层的钎料内扩展. 焊点断口主要分为:裂纹扩展区和最终断裂区.  相似文献   

11.
Fatigue properties are important parameters for the safety design and security evaluation of pipelines. In this work, fatigue life and fatigue crack propagation of full-thickness X80 pipeline steel joints compared with the base metal (BM) was investigated. Full-thickness BM specimens showed superior fatigue life compared with that of welded joints. The fatigue crack initiation of full-thickness X80 welded joint specimens occurred at the outside weld toe and then grew inward until a fracture was formed. During fatigue crack growth in the heat-affected zone (HAZ), crack growth rate linearly increased with increased ΔK in each HAZ subregion. However, the change rate of fatigue crack growth rate (da/dN) differed among HAZ subregions. This difference was related to the variation in crack path and fracture mode because of the possible microstructural sensitivity of fatigue crack propagation behaviour.  相似文献   

12.
Abstract

In phase thermomechanical fatigue (TMF) in the temperature range 573–973 K (300–700°C) and isothermal fatigue behaviour at 973 K in air were studied for type 316 stainless steel using smooth cylindrical specimens machined from base metal, weld metal, and the weld joint (cross-weld). In all joint specimens, fatigue failure occurred in the weld metal region. The lifetimes of weld metal and joint specimens were almost equal and were always inferior to those of base metal specimens. In the base metal, the effect of strain rate on the isothermal fatigue life was not very significant. Although TMF lifetimes were always a little shorter than the isothermal fatigue lifetimes in base metal, the difference was small for the same mechanical strain range and similar strain rate. This may be because the fracture mode for both types of loading was of a similar mixed type. Conversely, a dramatic reduction in lifetime was observed in weld metal and joint specimens under TMF in comparison with isothermal fatigue. This was attributed to the additional damage caused by many independent subsurface cracks at σ phase boundaries and linkage of these cracks with the surface crack, leading to rapid crack propagation. The δ ferrite in the weld metal completely transformed to σ phase in both the isothermal fatigue and TMF tests.  相似文献   

13.
Fatigue properties of cast aluminium welded joints by friction stir welding (FSW) and MIG welding were investigated, comparing with that of the base plate. Fatigue crack propagation tests for the da/dN ? ΔK relation and bending fatigue tests for the S–N relation were carried out. Fatigue cracks in both FSW and MIG specimens were accelerated, when the fatigue crack tip reached the stir zone or the weld metal. This behaviour was discussed based on the crack closure induced by the crack surface roughness and the residual stress. In the S–N properties, the influence of specimen surface finishing on fatigue life was also examined. Fatigue lives of the FSW and MIG specimens in the ‘as weld’ condition were in the range of the largely scattered base plate fatigue lives, in spite of the different fatigue crack initiation sites in each specimen such as the porosity in the base plate, the tool mark bottom in the FSW and the weld toe in the MIG. The FSW specimens with the polished surface showed the particular improvement in fatigue strength for finite fatigue life.  相似文献   

14.
In this paper, fatigue crack propagation life of resistance spot welds in tensile-shear specimens is investigated based on the calculation of stress intensity factors and J-integral using three-dimensional finite element method. For comparison, experimental works on 5083-O aluminum alloy spot-welded joints have been carried out to verify the numerical predictions of fatigue crack propagation of welded joints. A lot of analyses have been performed to obtain stress intensity factors and J-integral in tensile-shear specimens of spot-welded joints by using commercial software ANSYS. These gathered data have been formulated by using statistical software SPSS. The results of fatigue propagation life and predicted fatigue crack path revealed very good agreement with the experimental fatigue test data and photograph of cross-section of the fatigued spot-weld specimens.  相似文献   

15.
Abstract

The present study is carried out to investigate fatigue crack initiation and kinking behaviours of spot welded coach peel (CP) specimens of low carbon steel sheets subjected to cyclic loading by experimental and finite element analysis methods. Evaluations of fatigue crack growth stages were performed by crack tip plastic strains and J integral analyses and also by microhardness measurements on process zone. According to the experimental and analytical results, fatigue crack initiation and growing stages in the spot welded CP specimens can be divided to three stages. Stage I corresponds to 'gap sharpening stage' observed at the beginning steps of cyclic loading with crack growing on the interface plane between the overlapped sheets. Stage II corresponds to kinked crack initiation and propagation through the sheet thickness observed after applying a certain number of loading cycles. Stage III corresponds to crack propagation through the width of the specimens observed at the final step of the fatigue crack propagation. The FE results of the crack paths and crack locations are in good agreement with those of experimental observations.  相似文献   

16.
The fatigue crack propagation in dual-phase steel was studied with the objective of developing ferriticmartensitic microstructures via intercritical annealing and thermomechanical processing. It was found that the changes in fatigue crack propagation rates and in the threshold stress intensity range, ΔK th, resulting from microstructural variations, were directly related to tensile strength in the same manner that was observed in other types of structural steels. It was also observed that the relationship between tensile strength and fatigue crack propagation in intercritically annealed and thermomechanically processed dual-phase steel was much the same as for conventional steels of similar strength level.  相似文献   

17.
18.
This study was aimed at evaluating the static shear strength and fatigue properties of the newly developed refilled friction stir spot welded AA 6061-T6 joints. The keyhole, the process disadvantage of conventional friction stir spot welding, was refilled successfully, using an additional filler plate, with specially designed tools. Two different tool profiles, namely, convex and concave, were used for the refilling process. Sound and defect free joints were obtained by the refilling process. Joints refilled with convex tools showed better static shear strength than those with the concave ones. The variation of microhardness in different regions of the weld was analysed. Fatigue tests were conducted on the lap shear specimens at a stress ratio of R?=?0·1. The optical micrographs of the welds after fatigue failure in both the conventional and refilled processes were examined to study the fatigue crack propagation and failure modes.  相似文献   

19.
Abstract

A study was carried out on laser and resistance spot welds in overlapped sheets of dual phase advanced high strength steel (DP780) and deep drawing steel (DC04) of 2˙0 mm in thickness. The aim of the study was to investigate the fatigue performance of these joints under tensile shear loading as well as the monotonic performance for applications in the automotive industry. The mechanical properties, failure behaviour and fatigue life analyses of spot welds in similar and dissimilar joints were investigated by experimental and numerical methods. The structural stress concept was used to describe the fatigue lives of spot welded specimens. The results revealed different failure types with different fatigue behaviours for laser and resistance spot welds under the application of cyclic loads at 'high load' and 'low load' levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号