首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以三维锐钛矿TiO2微球为上层光散射层材料, 以商业纳米TiO2为下层连接材料, 采用刮刀法制备了一种新颖的双层TiO2薄膜, 并应用于量子点敏化太阳能电池(QDSSC)。其中, 石墨烯量子点(GQDs)采用滴液法引入, CdS/CdSe量子点采用连续离子层吸附法(SILAR)制备。采用场发射扫描电镜、透射电镜、X射线衍射、紫外-可见漫反射光谱及荧光光谱对样品进行表征。实验还制备了CdS/CdSe量子点敏化及石墨烯量子点/CdS/CdSe共敏化太阳能电池, 并研究了石墨烯量子点及CdS不同敏化周期及对电池性能影响。研究结果表明, 石墨烯量子点及CdS不同敏化周期对薄膜的光学性质、电子传输及载流子复合均有较大影响。优选条件下, TiO2/QGDs/CdS(4)/CdSe电池的光电转换效率为1.24%, 光电流密度为9.47 mA/cm2, 显著高于TiO2/CdS(4)/CdSe电池的这些参数(0.59%与6.22 mA/cm2)。这主要是由于TiO2表层吸附石墨烯量子点后增强了电子的传输, 减少了载流子的复合。  相似文献   

2.
Pure and TiO2- and CdSe-deposited ZnO nanosheets aligned vertically to the surface of ITO (Indium tin oxide) are prepared using electrodeposition, which is used for building blocks of dye sensitized solar cell. A significant improvement in the photovoltaic efficiency can be obtained by depositing TiO2 or CdSe on ZnO. Photoluminescence spectra show that the TiO2 and CdSe nanostructures suppress the recombination of the electron-hole pair of ZnO. We suggest that the interface charge transfer at TiO2-ZnO and CdSe-ZnO should be responsible for the suppression of the electron-hole pair recombination and enhanced solar cell efficiency by TiO2 and CdSe nanostructures.  相似文献   

3.
以Fe-Ni/TiO2为催化剂,采用流化床化学气相沉积法(FBCVD)在TiO2表面原位生长碳纳米管(CNT),得到CNT/Fe-Ni/TiO2复合光催化剂.通过SEM、XRD、UV-Vis等方法表征其结构和性能,以亚甲基蓝溶液降解为模型考察其光催化性能.结果表明:Fe-Ni/TiO2催化剂在FBCVD过程中,镍主要起到了CNT生长催化活性位的作用;在生长CNT后的复合光催化剂中,比例较低的Fe3+主要作为电子俘获剂,抑制TiO2光生电子空穴的复合;Ni和CNT共同起到将电子迅速地从TiO2中导出,从而降低光生电子空穴复合几率的作用.三者的协同作用显著改善了TiO2的光催化性能.其中Fe和Ni掺杂量分别为0.25mol%和4.75mol%样品的光催化活性较高,生长CNT后得到的复合光催化剂对亚甲基蓝的降解效率较纯TiO2提高约70%.  相似文献   

4.
Crystal growth of semiconductor quantum dots (QDs) adsorbed on nanostructured TiO2 electrodes is important not only for crystallographic studies but also for improving the photovoltaic efficiency of semiconductor-sensitized solar cells. In this study, nanostructured TiO2 electrodes using supporting Ti substrates were prepared. These electrodes are then adsorbed with self-assembled CdSe QDs as photosensitizers to investigate the crystal growth and photoelectrochemical current properties. Average diameters of the CdSe QDs can be estimated from optical absorption spectra by using photoacoustic (PA) technique. PA technique is a powerful tool for evaluating the optical absorption of opaque and scattered samples because of the detection by photothermal phenomenon. When the adsorption time increases, the CdSe QDs diameter increases and then shows saturation for all the cases. Normal solution growth plus suppression (negative growth) contributions can be derived by PA spectroscopic analysis. Both of them depend on adsorption temperatures for CdSe QDs formation. Photosensitization of the nanostructured TiO2 electrodes in the visible region resulting from CdSe QDs deposition can be clearly observed. Incident photon to current conversion efficiency (IPCE) of CdSe QDs adsorbed at high temperature formation is smaller than that adsorbed at low temperature one, indicating the increase of recombination centers with increasing adsorption temperature. This implies that negative growth, or dissolving effect, produces much more recombination centers inside of CdSe QDs and/or interface between the QDs and TiO2.  相似文献   

5.
Colloidal CdSe@CdS core-shell quantum dots (QDs) have been prepared and exploited as inorganic dyes to sensitize a large-band-gap TiO2 layer for QD-sensitized solar cells. The sensitized films were prepared by alternating the layer-by-layer deposition of water-soluble semiconductor QDs and polycations over mesoscopic TiO2 films. The multilayer build-up, monitored by UV-vis spectroscopy shows an increase in the film absorbance with the number of adsorbed CdSe@CdS layers. The photoluminescence (PL) and photoelectrochemical properties of the multilayers were investigated. The photovoltaic performance of QD-sensitized solar cells is strongly dependent on the film structure and component. The incorporation of the electron mediators of [Co(Phen)3]2+ during the deposition process remarkably enhanced the photocurrent intensity in comparison to that in case of QD/polyelectrolyte multilayers.  相似文献   

6.
CdPbS quantum dots-sensitized TiO2 photoelectrode was prepared using chemical bath codeposition technique by dipping TiO2 film into a 0.5 M Cd(NO3)2-Pb(NO3)2 solution (molar ratio 9:1) and a 0.5 M Na2S methanol solution. The CdPbS quantum dots have the size about 4 to 6 nm and distribute homogeneously in the TiO2 film. The as-prepared electrode showed improved absorption spectra. The assembled quantum dots-sensitized solar cell (QDSSC) yielded a power conversion efficiency (nu) of 1.88% and a short-circuit current of 15.28 mA/cm2 under AM 1.5 illumination of 100 mW/cm2, far outperformed the single PbS, CdS QDSSC and the nu increased 49.2% than coupled PbS/CdS QDSSC. The solar cell presented IPCE peak value of 45.7% and the effective photovoltaic range covers the visible region and near infrared region.  相似文献   

7.
In this present study, we demonstrate the size dependent charge transfer from CdTe quantum dots (QDs) into TiO2 substrate and relate this charge transfer to the actual behavior of a CdTe sensitized solar cell. CdTe QDs was synthesized using mercaptopropionic acid as the capping agent. The conduction band offset for TiO2 and CdTe QDs indicates thermodynamically favorable band edge positions for smaller QDs for the electron-transfer at the QD–TiO2 interface. Time-resolved emission studies were carried out for CdTe QD on glass and CdTe QD on TiO2 substrates. Results on the quenching of QD luminescence, which relates to the transfer kinetics of electrons from the QD to the TiO2 film, showed that at the smaller QD sizes the transfer kinetics are much more rapid than at the larger sizes. IV characteristics of quantum dot sensitized solar cells (QDSSC) with different sized QDs were also investigated indicating higher current densities at smaller QD sizes consistent with the charge transfer results. The maximum injection rate constant and photocurrent were obtained for 2.5 nm CdTe QDs. We have been able to construct a solar cell with reasonable characteristics (Voc = 0.8 V, Jsc = 1 mA cm−2, FF = 60%, η = 0.5%).  相似文献   

8.
A CdS/CdSe quantum-dot (QD)-cosensitized TiO(2) film has been fabricated using a microwave-assisted chemical bath deposition technique and used as a photoanode for QD-sensitized solar cells. The technique allows a direct and rapid deposition of QDs and forms a good contact between QDs and TiO(2) films. The photovoltaic performance of the as-prepared cell is investigated. The results show that the performance of the CdS/CdSe-cosensitized cell achieves a short-circuit current density of 16.1 mA cm(-2) and a power conversion efficiency of 3.06% at one sun (AM 1.5 G, 100 mW cm(-2)), which is comparable to the one fabricated using conventional successive ionic layer adsorption and reaction technique.  相似文献   

9.
Owing to their special three-dimensional network structure and high specific surface area,TiO2 submicrospheres have been widely used as electron conductors in photoanodes for solar cells.In recent years,utilization of TiO2 submicrospheres in solar cells has greatly boosted the photovoltaic performance.Inevitably,however,numerous surface states in the TiO2 network affect electron transport.In this work,the surface states in TiO2 submicrospheres were thoroughly investigated by charge extraction methods,and the results were confirmed by the cyclic voltammetry method.The results showed that ammonia can effectively reduce the number of surface states in TiO2 submicrospheres.Furthermore,in-depth characterizations indicate that ammonia shifts the conduction band toward a more positive potential and improves the interfacial charge transfer.Moreover,charge recombination is effectively prevented.Overall,the cell performance is essentially dependent on the effect of the surface states,which affects the electron transfer and recombination process.  相似文献   

10.
In this study, synthesis of carbon nanotube (CNT)–CdSe Quantum dots (QDs) nanocomposites has been investigated. CdSe QDs were synthesized via hydrothermal process. The chemical tendency of CNT and QDS was increased by precipitation after surface functionalization of CNTs (by carboxylated groups) and CdSe QDs (by silane groups), separately. The structure of nanocomposites was amorphous with a little amount of nanocrystalline cubic CdSe. The Fourier-transform infrared (FTIR) spectra and Raman spectrum revealed the strong chemical tendency of linkage between CNTs and QDs after functionalization on the surface of them. The morphology of nanocomposites depended on the QDs concentration and changed from aggregates of CNTs to the marvelous decoration of quantum dots on the ropes of CNTs. Transmission electron microscope (TEM) and atomic force microscope (AFM) images confirmed the adorable coatings of CNTs with CdSe QDs. The nanocomposites emitted in blue–green region with a maximum peak at 490 nm under the exposure of Ultraviolet (UV) light. Below 50 wt% QDs, the emission was quenched completely.  相似文献   

11.
Salant A  Shalom M  Tachan Z  Buhbut S  Zaban A  Banin U 《Nano letters》2012,12(4):2095-2100
The effect of the shape of nanocrystal sensitizers in photoelectrochemical cells is reported. CdSe quantum rods of different dimensions were effectively deposited rapidly by electrophoresis onto mesoporous TiO(2) electrodes and compared with quantum dots. Photovoltaic efficiency values of up to 2.7% were measured for the QRSSC, notably high values for TiO(2) solar cells with ex situ synthesized nanoparticle sensitizers. The quantum rod-based solar cells exhibit a red shift of the electron injection onset and charge recombination is significantly suppressed compared to dot sensitizers. The improved photoelectrochemical characteristics of the quantum rods over the dots as sensitizers is assigned to the elongated shape, allowing the build-up of a dipole moment along the rod that leads to a downward shift of the TiO(2) energy bands relative to the quantum rods, leading to improved charge injection.  相似文献   

12.
采用多壁碳纳米管(MWCNTs)为载体,分别以醋酸镉((CH3COO)2Cd.2H2O)和硫化钠(Na2S.5H2O)为镉源和硫源,经简单逐滴滴入途径制备了CdS/CNT复合材料。再以四丁氧基钛(TNB)为钛源,苯为溶剂,成功地将二氧化钛(TiO2)纳米粒子沉积在CdS修饰的MWCNTs表面而得到CdS/CNT-TiO2光催化剂。利用N2吸附等温线、扫描电子显微镜、X射线衍射、能量分散性X射线分析以及透射电子显微镜对所制CdS/CNT-TiO2光催化剂进行表征。CdS/CNT-TiO2复合材料呈多孔结构,MWCNTs均匀分散在材料中,且未出现明显的TiO2和CdS纳米颗粒团聚体。该材料在紫外和可见光照射下对亚甲基蓝具有优异的降解活性。这不仅归因于TiO2对自由基的反应和MWCNTs吸附能力,且归因于引入窄带隙半导体CdS,使粒子在MWCNTs表面的电子转移速率得到提高。  相似文献   

13.
采用水相共沉积法制备Ag2Se量子点(QDs), 并与染料共敏化制备固态染料敏化太阳能电池(DSSCs)。考察了Ag2Se量子点不同敏化方式(TiO2/N719/QDs, TiO2/QDs/N719)及敏化时间(0~5 h)对DSSCs性能的影响。通过透射电子显微镜(TEM)和紫外-可见光谱图(UV-Vis)对Ag2Se量子点结构及光学性质进行了表征; 采用光调制光电流/电压谱(IMPS/VS)以及交流阻抗谱(EIS)对器件中载流子传输过程进行了研究。TiO2/QDs/N719的电池器件比TiO2/ N719/QDs具有更高的单色光量子转化效率(IPCE)及光电转化效率, 这是由于TiO2/QDs/N719可以吸附更多的量子点和染料。随着Ag2Se量子点敏化时间的延长, 光电转化效率先提高后降低, 最高达到3.97%。Ag2Se量子点在器件中起到了阻挡层作用, 可以促进电子传输, 抑制电子-空穴复合。而随着量子点敏化时间超过2 h, 电子陷入陷阱的几率增加, 导致器件的光伏性能下降。  相似文献   

14.
Colloidal CdSe quantum dots (QDs) of different sizes, prepared by a solvothermal route, have been employed as sensitizers of nanostructured TiO(2) electrode based solar cells. Three different bifunctional linker molecules have been used to attach colloidal QDs to the TiO(2) surface: mercaptopropionic acid (MPA), thioglycolic acid (TGA), and cysteine. The linker molecule plays a determinant role in the solar cell performance, as illustrated by the fact that the incident photon to charge carrier generation efficiency (IPCE) could be improved by a factor of 5-6 by using cysteine with respect to MPA. The photovoltaic properties of QD sensitized electrodes have been characterized for both three-electrode and closed two-electrode solar cell configurations. For three-electrode measurement a maximum power conversion efficiency near?1% can be deduced, but this efficiency is halved in the closed cell configuration mainly due?to?the decrease of the fill factor (FF).  相似文献   

15.
Zhao Y  Hu Y  Li Y  Zhang H  Zhang S  Qu L  Shi G  Dai L 《Nanotechnology》2010,21(50):505702
5?mm long aligned titanium oxide/carbon nanotube (TiO(2)/CNT) coaxial nanowire arrays have been prepared by electrochemically coating the constituent CNTs with a uniform layer of highly crystalline anatase TiO(2) nanoparticles. While the presence of the TiO(2) coating was confirmed by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and x-ray diffraction, the resultant TiO(2)/CNT coaxial arrays were demonstrated to exhibit minimized recombination of photoinduced electron-hole pairs and fast electron transfer from the long TiO(2)/CNT arrays to external circuits. This, in conjunction with the aligned macrostructure, facilitates the fabrication of TiO(2)/CNT arrays for various device applications, ranging from photodetectors to photocatalytic systems. Thus, the millimeter long TiO(2)/CNT arrays represent a significant advance in the development of new macroscopic photoelectronic nanomaterials attractive for a variety of device applications beyond those demonstrated in this study.  相似文献   

16.
Undoped and Zn-doped CdSe quantum dots (QDs) were successfully synthesized by the chemical precipitation method. The structural, optical and morphological properties of the synthesized undoped and Zn-doped CdSe QDs were studied by X-ray diffraction (XRD), UV–visible absorption spectroscopy, photoluminescence (PL) spectroscopy, fluorescence lifetime spectroscopy, scanning electron microscopy (SEM), field emission transmission electron microscopy (FE-TEM) and FTIR. The synthesized undoped and Zn-doped CdSe QDs were in cubic crystalline phase, which was confirmed by the XRD technique. From the UV–visible absorption spectral analysis, the absorption wavelengths of both undoped and Zn-doped CdSe QDs show blue-shift with respect to their bulk counterpart as a result of quantum confinement effect. The highest luminescence intensity was observed for CdSe QDs doped with 4% Zn by PL studies. TEM analysis shows that the prepared QDs are spherical in shape.  相似文献   

17.
CdS/CdSe quantum dot-sensitized solar cells (QDSCs) based on ZnO nanorods, 4.55 μm in length, were studied. Many studies have shown that the performance of QDSCs is limited by a recombination process. Therefore, the interface layer was fabricated on the surface of the ZnO nanorods to retard recombination at the interface between the semiconductor and electrolyte. Overall, the performance of the QDSCs was improved by a surface coating of aluminum isopropoxide (Al2O3) on the ZnO nanorod, which facilitates a decrease in electron recombination and increased adsorption of CdS/CdSe QDs on the ZnO nanorods.  相似文献   

18.
Chang JY  Kim TG  Sung YM 《Nanotechnology》2011,22(42):425708
Solution-grown ZnO nanorods (NRs) were successfully conjugated with CdSe/ZnS quantum dots (QDs) and Ag nanoparticles (NPs) to suppress intrinsic defect emission and to enhance band-edge emission at the same time. First, high-density and high-crystallinity ZnO NRs of diameter 80–90 nm and length 1.2–1.5 μm were grown on glass substrates using a low-temperature seed-assisted solution method. The as-synthesized ZnO NRs showed sharp photoluminescence (PL) band-edge emission centered at ~377 nm together with broad defect emission in the range of ~450–800 nm. The ZnO NRs were decorated with CdSe/ZnS QDs and Ag NPs, respectively, by sequential drop-coating. The PL of CdSe/ZnS QD||ZnO NR conjugates showed that ZnO band-edge emission decreased by 73.8% due to fluorescence resonance energy transfer (FRET) and charge separation between ZnO and CdSe/ZnS by type II energy band structure formation. On the other hand, Ag NP||CdSe/ZnS QD||ZnO NR conjugates showed increased band-edge emission (by 25.8%) and suppressed defect emission compared to bare ZnO NRs. A possible energy transfer mechanism to explain the improved PL properties of ZnO NRs was proposed based upon the combined effects of FRET and surface plasmon resonance (SPR).  相似文献   

19.
Hot carrier and multiple exciton extractions from lead salt quantum dots (QDs) to TiO(2) single crystals have been reported. Implementing these ideas on practical solar cells likely requires the use of nanocrystalline TiO(2) thin films to enhance the light harvesting efficiency. Here, we report 6.4 ± 0.4 fs electron transfer time from PbS QDs to TiO(2) nanocrystalline thin films, suggesting the possibility of extracting hot carriers and multiple excitons in solar cells based on these materials.  相似文献   

20.
CdSe nanoparticles (NPs) capped with cysteinate (Cys), 3-mercaptopropionate (MP), and mercaptosuccinate (MS) were adsorbed to TiO(2) from basic aqueous dispersions. Native capping groups served as molecular linkers to TiO(2). Thus, the materials-assembly chemistry was simplified and made more reproducible and environmentally benign. The electronic properties of CdSe and the electron-transfer reactivity at CdSe-linker-TiO(2) interfaces varied with the structure and functionality of the capping groups. Cys-capped CdSe NPs exhibited a narrow and intense first excitonic absorption band centered at 422 nm, suggesting that they were magic-sized nanocrystals (MSCs) with diameters less than 2 nm. MP- and MS-capped CdSe NPs had broader and lower-energy absorption bands, which are typical of regular quantum dots. Photocurrent action spectra of nanocrystalline TiO(2) films functionalized with Cys-CdSe, MP-CdSe, and MS-CdSe overlaid closely with absorption spectra, indicating that excitation of CdSe gave rise to the injection of electrons into TiO(2). Under white-light illumination, the global energy-conversion efficiency for Cys-capped CdSe ((0.45 ± 0.11)%) was 1.2-to-6-fold greater than for MP- and MS-capped CdSe. Similarly, the absorbed photon-to-current efficiency was 1.3-to-3.3-fold greater. These differences arose from linker-dependent variations of electron-injection and charge-recombination reactivity. Transient absorption measurements indicated that electron injection from Cys-capped CdSe was more efficient than from MS-capped CdSe. In addition, charge recombination at CdSe-MS-TiO(2) interfaces was complete within hundreds of nanoseconds, whereas the charge-separated-state lifetime at CdSe-Cys-TiO(2) interfaces was on the order of several microseconds. Thus, Cys-capped CdSe MSCs are readily attached to TiO(2) and exhibit unusual electronic properties and desirable electron-transfer reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号