首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以磺化杂萘联苯聚醚酮(SPPEK)为基体,采用共混法制备了SPPEK/PWA复合质子交换膜。采用红外光谱、热分析与交流阻抗等方法对复合膜的结构和性能进行了研究,并与Nafion117膜进行了比较。结果表明,磷钨酸(PWA)的掺杂使得复合膜的吸水率和溶胀度增大,同时热稳定性能得到提高。复合膜在20℃时的质子电导率为0.67×10-2S/cm,接近Nafion117膜的质子电导率(1.08×10-2S/cm)。且随着温度的升高,电导率逐渐增大,最高可达1.18×10-2S/cm。此外,对复合膜不同方向上的电导率进行了测试,表明膜平面方向上的电导率(8.10×10-2S/cm)高于厚度方向上电导率(7.50×10-3S/cm)约一个数量级。  相似文献   

2.
以单壁碳纳米管(SWCNTs)为填充剂制备了环氧树脂(EP)液态复合导电体系。对不同温度和剪切场下SWCNTs/EP分散体系的导电性能进行了测试。结果发现:SWCNTs含量增加,分散体系黏度和电导率提高,当SWCNTs含量为0.5%时(vol,下同),体系导电性能的变化趋于平缓。温度升高,体系的导电性能提高,在40℃至95℃之间,体系的电导逾渗值从0.31%降低到0.15%,电导率由2.4×10-7S/m升高至7.0×10-2S/m,上升5个数量级。50℃下剪切速率从60r/min增大到300r/min,SWCNTs含量为0.025%的体系电导率略有增加(由2.0×10-5 S/m升高到3.0×10-5S/m),超过0.05%后,体系电导率随剪切时间的延长先减小后增大。此外,剪切场导致体系逾渗值增大,电导率降低。  相似文献   

3.
直接乙醇燃料电池用Nafion/SiO_2复合膜的制备及性能研究   总被引:2,自引:0,他引:2  
用纳米SiO2对Nafion117进行了掺杂改性并制膜,采用气相色谱分析仪和电化学工作站分别对膜的渗透率和质子电导率等进行了研究。结果表明,掺杂改性后,经60℃硅溶胶处理的膜具有高的质子导电率和高温保水性能,同时使膜的乙醇渗透率大幅度降低。经60℃硅溶胶处理的膜和其它条件处理的膜的渗透系数为4.07×10-4cm2/s、8.13×10-4cm2/s,表明经过60℃硅溶胶处理的Nafion膜乙醇渗透系数降低一半。  相似文献   

4.
以石墨化处理的碳纳米管为导电填料、纤维素纤维为基体,用真空抽滤法制备碳纳米管-纤维素纤维复合材料,用扫描电子显微镜、四探针电阻仪、矢量网络分析仪等手段对其进行了表征,研究了碳纳米管含量对碳纳米管-纤维素复合材料电磁屏蔽性能的影响。结果表明,样品的形状和电阻可控,具有良好的柔韧性、导电性能和电磁屏蔽性能。碳纳米管吸附于纤维上,构成了良好的导电网络。在碳纳米管加载量由10%提高到71%的过程中,碳纳米管复合纸的电导率和屏蔽性能明显提高,电导率由9.92 S/m提高为216.3 S/m,在175 MHz-1600 MHz频段屏蔽效能由15d B提高为45d B。  相似文献   

5.
利用纤维素纳米晶须(CNCs)搭载碳纳米管(CNTs)在水相中形成均一稳定的纳米CNCs-CNTs导电复合物,并将其均匀分散于聚乙烯醇(PVA)基体中制得纺丝液,采用静电纺丝技术制备纤维定向排列的CNCs-CNTs/PVA复合导电膜。结果表明:CNCs-CNTs增强了纤维膜热力学性能,并赋予其导电功能;纤维的定向排列显著提高了膜的力学性能;随CNTs含量增加,纺丝液电导率和黏度提高,纤维直径减小;当CNCs和CNTs与PVA的质量比分别为8.0%和1.0%时,CNCs-CNTs/PVA的纤维直径、拉伸强度和电导率分别可达182 nm±35 nm、15.99 MPa±1.25 MPa和0.12 S/m±0.01 S/m;当电流密度为0.2 A/g时,其比电容可达127.1 F/g,且经过1 500次充放电循环后电容量仍保持在83.14%。基于导电膜优良的力学性能、热稳定性和导电性,CNCs-CNTs/PVA导电膜有望应用于可折叠超级电容器、柔性传感器和柔性电极材料等领域。  相似文献   

6.
导电聚合物纳米线的制备及气敏性能研究   总被引:1,自引:0,他引:1  
首次采用简单的浸润多孔氧化铝(AAO)模板法制备了导电聚合物聚-3,4-乙烯二氧噻吩(PE-DOT)纳米线.导电聚合物溶液浸润AAO模板后,PEDOT吸附于孔道壁并进一步聚合生成导电聚合物纳米线.紫外-可见光-近红外光谱(UV-vis-NIR spec-trum)分析表明生成的纳米线处于掺杂态.采用四探针仪分析了导电聚合物纳米线的导电性能,结果显示纳米线电导率相比普通PEDOT材料有数量级增加,且表现出良好的掺杂/脱掺杂能力.研究了导电聚合物纳米线的气体敏感性能,发现其对挥发性醇类,尤其对甲醇在较低浓度下表现出优异的敏感性,对5×10-6甲醇气体的响应时间约为10~20s,测试可重复性超过20次,达到饱和吸附时的气体浓度明显大于普通PEDOT材料.表明PEDOT纳米线不仅提供了较大表面积供气体分子吸附,而且纳米线中导电通道取向一致,从而体现出较好的气体敏感性能.  相似文献   

7.
聚合物基导电复合材料的室温逾渗机理是其使用和制备的重要基础。为了阐述聚乙烯/碳纳米管导电复合材料的室温逾渗性能,文中基于交流阻抗的分析思路和方法,采用电阻电容的等效电路模拟复合材料中的电学性能。以熔融法制备的高密度聚乙烯(HDPE)/碳纳米管(CNTs)复合材料为研究对象,测试其室温下的电学性能与CNTs含量间的关系,其中交流(AC)阻抗测试频率范围为100Hz到106.5Hz。当碳纳米管质量分数为0.5%时复合材料的电导率升至10~(-6)S/cm,表明复合材料中逾渗网络已初步形成。随频率变化的AC阻抗可清晰地展示HDPE/CNTs中导电网络的形成过程,并表明在导电复合材料的电学逾渗中,复合材料的导电机理逐渐由电容主导向电阻主导变化。  相似文献   

8.
应用溶解-铸膜法制备聚乙烯醇(PVA)-KOH-H2O碱性凝胶聚合物电解质膜。用交流阻抗测试电解质膜离子电导率,结果表明随KOH含量增加,电解质膜的电导率先增后减,当m(PVA):m(KOH)=3:4.5时(质量比,下同),室温电导率达到最大值,为4.63×10-2S/cm。聚合物电解质膜的电导率随温度的变化基本符合Arrhenius方程。加入KOH后,PVA结构从晶态向非晶态转变,结晶度降低,热稳定性提高。循环伏安和DSC热分析显示该聚合物电解质膜具有很好的电化学稳定性和热稳定性。有望应用于碱性二次电池。  相似文献   

9.
向军 《材料导报》2005,19(Z2):277-279
采用固相反应法合成了具有四方钙钛矿结构的混合氧离子导体SmAl1-xZnxO3-δ(x=0,0.03,0.05,0.1).通过直流四引线法对样品的电导率与温度和氧分压的关系进行了测量.结果表明,Zn2 掺杂显著提高了样品的电导率,与未掺杂的SmAlO3相比,其电导率提高了3~4个数量级.在所有样品中,SmAl0.95Zn0.05O3-δ的电导率最高,800℃时为3.5×10-1S/m,活化能为0.43eV.在973~1273K范围内,SmAl0.95Zn0 05O3-δ是一个氧离子和电子空穴的混合导体,但氧离子迁移数(ti)大于0.8,以离子导电为主.随着温度的下降,样品的氧离子迁移数逐渐增加.  相似文献   

10.
热电转换技术能将大量的废弃热能转换为电能以重新利用,是一种绿色能源转换技术,可以有效提高能源利用效率,缓解煤炭、石油等主要化石类能源过度开采、使用带来的能源危机及环境污染问题,因此受到科研工作者的广泛关注,是近年来的研究热点。基于此,本文以电子型导电高聚物中机能较优的聚(3, 4-乙烯二氧噻吩)(PEDOT)作为研究主体,通过化学原位氧化聚合将多壁碳纳米管(MWCNT)复合到载体中得到MWCNT/PEDOT复合材料。利用XRD、拉曼、TEM及正电子湮没寿命(PAL)等方法对MWCNT/PEDOT复合材料的形貌和微观结构进行了系统研究,研究表明:当MWCNT含量高于24.9wt%时,复合材料中出现MWCNT团聚现象,其分散性变差。同时,MWCNT/PEDOT复合材料的热电性能测试结果显示,未掺杂PEDOT的电导率仅为7.5 S·m?1,而MWCNT含量为30.1wt%时,该复合材料的电导率高达566.59 S·m?1,提高近76倍。同时,30.1wt%MWCNT/PEDOT的功率因子(814.3×10?4 μW·(m·K2)?1)相对于未掺杂PEDOT(14.5×10?4 μW·(m·K2)?1)提高约56倍,这主要是由于PEDOT分子链与MWCNT掺杂物间π-π相互作用及MWCNT的高导电性。随着MWCNT含量的增加,PAL测试结果中第一寿命成分τ1(即正电子在材料中湮没的第一寿命成分)的下降证实了该复合材料中MWCNT与PEDOT间界面变小或者界面间相互作用减弱,导致其热导率相对于未掺杂PEDOT有一定的上升,但远远低于功率因子的升高。最终,该MWCNT/PEDOT复合材料的热电优值(即热电材料ZT值)由0.015×10?4升至0.45×10?4,增加了约30倍。结果表明:掺杂的高电导率MWCNT能够极大地提高PEDOT类电子型导电聚合物的热电性能。   相似文献   

11.
以La2Mo1.7W0.3O9为本体,在La位进行碱土金属掺杂,采用溶胶-凝胶方法合成新型氧离子导体La1.84R0.16Mo1.7 W0.3O8.92(R=Ca2 、Sr2 、Ba2 ).应用示差热分析(DTA)、X射线衍射(XRD)、拉曼光谱(Raman)等手段对氧化物进行结构表征,交流阻抗谱测试电性能.结果表明:掺杂改善了本体导电性能的同时,保持了La2Mo1.7W0.3O9抑制La2Mo2O9相变的功能;碱土离子的掺杂,在体系中引入了氧空位,有利于氧离子扩散,提高氧离子导电性,773K时Ba2 掺杂体系的电导率为1.0×10-4S/cm,高于本体的电导率(5.0×10-5/cm).  相似文献   

12.
聚苯胺复合膜的制备及性质   总被引:7,自引:0,他引:7  
用溶液共混法制备聚苯胺与聚酰胺的复合膜,并研究了复合膜的性能。将化学氧化法制备的本征态聚苯胺用樟脑磺酸(PANI—CSA)掺杂后,与基体聚合物聚酰胺-66,聚酰胺-1010或聚酰胺-11同时溶解在间甲酚溶剂中,干法浇膜,制得的复合膜的电导率处于10^-6S/m~10^2S/m范围,导电阈值2%。DSC法对复合膜热性能和结晶性能进行了研究。采用三种不同pH值的溶液对复合膜进行了处理,对其导电性能的变化进行了测试。  相似文献   

13.
多壁碳纳米管(MWNTs)经对苯二胺功能化后,苯胺基团以3.7%的含量通过酰胺键连接到MWNTs表面(p-MWNTs),以十二烷基苯磺酸(DBSA)为掺杂剂和乳化剂,通过原位聚合,制备了在四氢呋喃(THF)中稳定溶解的DBSA掺杂聚苯胺(PANI)接枝MWNTs(PANI-g-MWNTs)导电复合材料.采用Raman光谱、傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)、紫外-可见光谱(UV-vis)、透射电子显微镜(TEM)、X射线衍射仪(XRD)和四电极电导率仪研究复合材料的结构与性能.实验结果表明,p-MWNTs表面的苯胺基团参与原位聚合反应,使PANI与p-MWNTs通过酰胺键连接起来,形成以p-MWNTs为核、DBSA掺杂PANI为壳的纳米结构.包覆层中DBSA掺杂PANI受限生长在p-MWNTs表面,其结构规整度较纯DBSA掺杂PANI提高.DBSA掺杂PANI-g-MWNTs复合材料溶解在THF中获得31.55 mg/mL的溶解度和至少1个月的稳定性,该复合材料的室温电导率为6.23×10-1 S/cm,较纯DBSA掺杂PANI提高1个数量级.  相似文献   

14.
首先制备了银纳米粒子(Ag NPs)搭载的氧化石墨烯(GO)分子膜;接着,将之均匀分散在商业Nafion溶液中,得高储水、导电的GO/Ag杂化离子交换膜;然后,在膜两侧沉积Pt纳米电极,最终获得杂化的离子交换聚合物-金属复合材料(IPMC)电致动器。IPMC的交流阻抗谱(EIS)和电致响应测试结果表明,GO/Ag掺杂后,离子交换膜的电导率增加,IPMC的偏转角和力输出随着增加;IPMC的电致动性能与离子交换膜的电导率紧密相关,电导率可作为评价IPMC电致响应性能优劣的有价值参数。  相似文献   

15.
制备了SPA/PVA/LiClO4凝胶电解质和固体导电膜。结果表明,LiClO4和SPA的质量分数分别为0.9%和3.5%的水凝胶电导率可达8.30×10-3S/cm;SPA、PVA、LiClO4的浓度分别为3.75g/100mL、3.75g/100mL和0.9g/100mL的水凝胶电解质电导率可达8.42×10-3S/cm,经过流延法制备的固体薄膜表面电导率为3.00×10-10S/cm,体积电导率9.8×10-8S/cm,证明固体膜具有固体电解质性能。固体膜的红外光谱分析表明PVA中的-OH基与SPA中的-COO-有氢键作用,使树脂对Li+,Na+的作用减弱,加速了Li+,Na+在弱交联网络中的络合-解离过程,提高了离子的迁移速率,从而实现了离子导电。  相似文献   

16.
采用正相微乳液聚合法在超声波作用下制备导电聚苯胺,研究超声场强度的变化和作用时间的长短对导电聚苯胺的粒度和导电性能的影响。结果表明:与非超声场相比,采用超声场作用下正相微乳液聚合法制备的导电聚苯胺粉体的粒度显著降低,平均粒径从16.59μm减小到10.35μm。随着超声时间的增加,聚苯胺的电导率从5.230×10-2S/cm提高到1.923×10-1S/cm,提高了一个数量级。在超声波的作用下,聚苯胺粉体中分子间的偶极矩变化加强,超声作用产生的空化效应强化了十二烷基苯磺酸的掺杂和乳化作用。  相似文献   

17.
以13X分子筛为分子筛骨架,吸附酚醛树脂后,在Ar气体保护下,800℃焙烧炭化,合成了导电分子筛。利用四端子法测定了样品的体积电导率,电导率由原13X分子筛的4.10×10-9S/cm提高到0.14S/cm。利用比表面及孔隙度分析仪,测得导电分子筛的BET表面积268.948m2/g、总孔容0.1334cm3/g、平均孔径0.7017nm。  相似文献   

18.
李月姣  吴锋 《化工新型材料》2012,40(3):94-96,99
将PDMS引入到WPU中,合成了PEO-PDMS混合软段WPU嵌段共聚物,通过改变PDMS的含量得到一系列固态聚合物电解质膜。测试结果表明,PDMS的加入会对聚合物电解质材料的力学性能、微观形态、电化学性能产生显著影响。PDMS的加入可有效地提高聚合物电解质的室温电导率及电化学稳定性,30℃时样品C17-10电导率为1.05×10-4S/cm,其电化学稳定窗口达到5.5V。  相似文献   

19.
采用固相反应法在1400℃合成了CaZr1-xInxO3-α(x=0,0.05,0.10,0.15)陶瓷粉体,在空气中1550℃,10 h对材料进行二次烧结.XRD物相分析结果确定合成后的样品中有CaZrO3和微量CaIn2O4存在.实验在600~850℃含水氩气中测量了样品的交流阻抗谱,计算出其电导率随温度变化的规律和电导激活能.在800℃时,CaZr1-xInxO3-α的电导率分别为4.64×10-7 S/cm(x=0)、3.06×10-4 S/cm(x=0.05)、3.89×10-4 S/cm(x=0.10)、3.93×10-4 S/cm(x=0.15).研究结果表明:对CaZrO3掺In能显著提高材料的电导率,降低电导激活能,掺杂量x0.1时,电导率增加变缓,并且电导率随温度的升高而增大.研究得到CaZr1-xInxO3-α的电导率与掺杂量的关系式.  相似文献   

20.
将磺化度为62%的磺化聚砜(SPSf)与笼型倍半硅氧烷(POSS-NH_2)进行共混,得到系列SPSf/POSS-NH_2杂化质子传导膜,研究了POSS-NH_2含量对SPSf/POSS-NH_2膜的吸水率、面电阻、质子电导率、钒离子渗透率、机械强度、耐氧化性能及相应钒电池性能的影响.研究表明,添加POSS-NH_2后,热分解温度提高,质子电导率可达10.55 mS/cm, POSS-NH_2质量分数为5%的S-P-5%杂化膜钒离子渗透率降低至5.47×10~(-9) cm~2/min,质子选择性提高(1.930×10~6 S·min/cm~3),远优于Nafion115膜(1.23×10~5 S·min/cm~3)和纯SPSf膜(S-P-0%膜)(5.41×10~5 S·min/cm~3).与S-P-0%膜相比,S-P-5%膜为电池效率最佳,库伦效率可稳定维持在99.4%左右,高于Nafion115膜(92.38%)和S-P-0%膜(91.72%),电压效率和能量效率也得到明显提升,300次循环仍然具有较稳定的电池效率,自放电时间达117 h,是Nafion115膜的10倍,POSS的引入为SPSf质子传导膜性能的提升提供了新思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号