首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
LaMg8.52Ni2.23M0.15 (M=Ni, Cu, Cr) alloys were prepared by induction melting. X-ray diffraction showed that all the three alloys had a multiphase structure, consisting of La2Mg17, LaMg2Ni and Mg2Ni phases. Energy dispersive X-ray spectrometer results revealed that most of Cu and Cr distributed in Mg2Ni phase. La2Mg17 and LaMg2Ni phases decomposed into MgH2, Mg2NiH4 and LaH3 phases during the hydrogenation process. Hydriding/dehydriding measurements indicated that the reversible hydrogen storage capacities of Mg2Ni phase in LaMg8.52Ni2.23M0.15 (M=Cu, Cr) alloys increased to 1.05 wt.% and 0.97 wt.% from 0.79 wt.% of Mg2Ni phase in LaMg8.52Ni2.38 alloy at 523 K. Partial substitution of Cu and Cr for Ni decreased the onset dehydrogenation temperature of the alloy hydrides and the temperature lowered by 18.20 and 5.50 K, respectively. The improvement in the dehydrogenation property of the alloys was attributed to that Cu and Cr decreased the stability of Mg2NiH4 phase.  相似文献   

2.
Melting method was used to obtain La2Mg17 alloy,and then Ni powder was added by mechanical alloying method.The kinetics of hydriding process and electrochemical properties of La2Mg17-x wt.%Ni(x=0,50,100,150,200) composites were investigated.X-ray diffraction(XRD) and scanning electron microscopy(SEM) analyses showed that the crystal structure of composite alloy gradually transformed into amorphous phase by the effect of ball milling and Ni powders.The research of hydrogen absorption properties found that La2Mg 17-50 wt.%Ni reached the highest hydrogen absorption than other alloys with more addition of Ni content,reached to 5.796 wt.% at 3 MPa,and up to 5.229 wt.% merely in 2 min,which revealed that the amorphous phase reduced the H occupation of the lattice clearance,resulting in the decline of hydrogen absorption capacity.The electrochemical tests indicated that the maximum discharge capacity increased to 353.1 mAh/g at 30 oC,however,the cycle stability decreased considerably.A series of kinetic measurements demonstrated that the controlling steps of electrochemical process of La 2 Mg 17-x wt.%Ni alloys transferred from hydrogen diffusion on alloy bulk(x=50,100) to hydrogen diffusion on both alloy bulk and surface(x=150,200).  相似文献   

3.
To improve the hydrogen storage performance of PrMg_(12)-type alloys,Ni was adopted to replace partially Mg in the alloys. The PrMg_(11)Ni+x wt.% Ni( x = 100,200) alloys were prepared via mechanical m illing. The phase structures and m orphology of the experim ental alloys were investigated by X-ray diffraction and transm ission electron microscopy. The results show that increasing milling time and Ni content accelerate the form ation of nanocrystalline and am orphous structure. The gaseous hydrogen storage properties of the experim ental alloys were determ ined by differential scanning calorim etry( DSC) and Sievert apparatus. In addition,increasing milling time makes the hydrogenation rates of the alloys augment firstly and decline subsequently and the dehydrogenation rate always increases. The maximum capacity is 5. 572 wt. % for the x = 100 alloy and 5. 829 wt. % for the x = 200 alloy,respectively. The enthalpy change( ΔH),entropy change( ΔS) and the dehydrogenation activation energy( E_k~(de)) markedly lower with increasing the milling time and the Ni content due to the generation of nanocrystalline and amorphous structure.  相似文献   

4.
Melt spinning technology was used to prepare the Mg2 Ni-type(Mg24 Ni10 Cu2)100–x Ndx(x=0,5,10,15,20) alloys in order to obtain a nanocrystalline and amorphous structure.The effects of Nd content and spinning rate on the structures and electrochemical hydrogen storage performances of the alloys were investigated.The structure characterizations of X-ray diffraction(XRD),transmission electron microscopy(TEM) and scanning electron microscopy(SEM) linked with energy dispersive spectroscopy(EDS) revealed that the as-spun Nd-free alloy displayed an entire nanocrystalline structure,whereas the as-spun Nd-added alloys held a nanocrystalline and amorphous structure and the degree of amorphization visibly increased with the rising of Nd content and spinning rate,suggesting that the addition of Nd facilitated the glass forming of the Mg2 Ni-type alloy.The electrochemical measurements indicated that the addition of Nd and melt spinning improved the electrochemical hydrogen storage performances of the alloys significantly.The discharge capacities of the as-cast and spun alloys exhibited maximum values when Nd content was x=10,which were 86.4,200.5,266.3,402.5 and 452.8 mAh/g corresponding to the spinning rate of 0(As-cast was defined as the spinning rate of 0 m/s),10,20,30 and 40 m/s,respectively.The cycle stability(S20,the capacity maintain rate at 20thcycle) of the as-cast alloy always rose with the increasing of Nd content,and those of the as-spun alloys exhibited the maximum values for Nd content x=10,which were 77.9%,83.4% 89.2% and 89.7%,corresponding to the spinning rate of 10,20,30 and 40 m/s,respectively.  相似文献   

5.
REMg 8.35Ni2.18Al0.21 (RE=La, Ce, Pr, and Nd) alloys were prepared by induction melting and following annealing. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the alloys were composed of Mg2Ni, (La, Pr, Nd)Mg2Ni, (La, Ce)2Mg17 , (Ce, Pr, Nd)Mg12 and Ce2Ni7 phases. The above phases were disproportioned into Mg2NiH4 , MgH2 and REH x (x=2.51 or 3) phases in hydriding. CeH2.51 phase transformed into CeH2.29 phase in dehydriding, whereas LaH3 , PrH3 and NdH3 phases remained unchanged. The PrMg8.41Ni2.14Al0.20 alloy had the fastest hydriding kinetics and the highest dehydriding plateau pressure while the CeMg8.35Ni2.18Al0.21 alloy presented the best hydriding/dehydriding reversibility. The onset hydrogen desorption temperature of the CeMg8.35Ni2.18Al0.21 hydride decreased remarkably owing to the phase transformation between the CeH2.51 and the CeH2.29 .  相似文献   

6.
Rare-earth(RE) element addition can remarkably improve the mechanical properties of magnesium alloys through precipitation hardening. The morphology, distribution and crystal structure of precipitates are regarded as major strengthening mechanisms in the Mg-RE alloys. In order to understand the formation of precipitates during aging at 225 oC in a Mg-10Gd-3Y-0.4Zr alloy(GW103K) with high strength and heat resistance, a high-resolution transmission electron microscopy(HRTEM) was employed to characterize the microstructural evolution. It was found that three types of precipitates were observed in the alloy at the early stage, named as: single layer D019 structure, one single layer D019 structure and one layer of Mg, two parallel single layers(containing RE) and Mg layer in between, which was regarded as ordered segregation of RE, precursors to form β′′ and β′ phase, respectively. Both of β′′ and β′ phase were transformed from the precursors. It was also found that large size of β′ phase and the small size of β′′ phase were constantly existent in the whole aging process. β′ phase played a major role in the strengthening of the GW103 K alloys and the decrease of the hardness was caused by the coarsening of β′ phase.  相似文献   

7.
RE3-xMgx(Ni0.7Co0.2Mn0.1)9 (x=0.5-1.25) alloys were prepared by induction melting and the influence of the partial substitution of RE (where RE stands for La-rich mischmetal) by Mg on the hydrogen storage and electrochemical properties of the alloys were investigated systematically. These alloys mainly consisted of three phases, La(Ni,Mn,Co)5 phase, La2Ni7 phase and Mg2Ni phase. The P-C-T isotherms showed that with Mg content increasing in the alloys, the hydrogen storage capacity first increased and reached the maximum capacity of 1.36 wt.% when x=1.0, and then decreased with x increasing further. Electrochemical studies revealed that the discharge capacity reached the maximum value of 380 mAh/g and the alloy electrode presented better cyclic stability when RE/Mg=2. The high rate discharge ability of the alloy electrodes was also improved by the substitution of Mg for RE. The RE2Mg(Ni0.7Co0.2Mn0.1)9 alloy exhibited better hydrogen absorption kinetics (x=1.0).)  相似文献   

8.
The effect of Pr,Nd addition on the magnetic properties and magnetic exchange interaction of gadolinium alloys was systematically studied.Curie temperature T_C and magnetic moment of Gd_(1–x)RE_x(RE=Pr,Nd)systems with x0.05 were investigated.When x0.05,Pr and Nd formed respectively with Gd continuous solid solution which has the crystalline structure HCP.Study on the magnetic behavior indicated that at near room temperature,the simple ferromagnetism prevailed in these two systems of alloy.The Curie temperature and magnetic moment of Gd_(1–x)RE_x alloy decreased with RE(RE= Pr,Nd)content x increasing.The de Gennes factor of Gd_(1–x)RE_x alloy which was associated with the exchange interaction between magnetic spin components also decreased with RE content increasing.The above results showed that the magnetic exchange interaction between magnetic atoms in gadolinium could be effectively changed by the Pr,Nd addition.  相似文献   

9.
The structure, magnetic and magnetocaloric properties of the Ge-rich Gd5Ge2.05-xSi1.95-xMn2x (x=0.01 and 0.03) alloys were investigated by scanning electron microscopy, X-ray powder diffraction, differential scanning calorimeter (DSC) and magnetization measurements. The results of energy dispersive X-ray analysis (EDX) and X-ray diffraction analyses showed that the composition and crystal structure of the alloys were desired. DSC measurements were performed to determine the transformation temperatures for each alloy. Both alloys exhibited the first order phase transition around room temperature. The alloys showed an anti-ferromagnetic transition around 60 K. The isothermal magnetic entropy changes of the alloys were determined from the isothermal magnetization measurements by using the Maxwell relation. The maximum values of isothermal magnetic entropy change of the Gd5Ge2.05-xSi1.95-xMn2x alloy with x=0.01 was found to be -12.1 and -19.8 J/(kg·K) using Maxwell equation around 268 K in applied fields of 2 and 5 T, respectively.  相似文献   

10.
Ferromagnetic shape memory alloys (FSMAs) such as NiMnGa, FePd and FePt are attractive as a new magnetic actuator material. They show a large magnetic-field-induced strain of 3% - 9% due to the variant rearrangement. Recently, the present authors have reported that in the Ni-Ga-Fe alloy the martensitic transformationfrom the B2 and/or the L21 structures into a seven-layer or five-layer modulated structure occurs upon cooling. In this alloy system, however, it is impossible to obtain a martensite phase at RT with a Curie temperature (To) higher than 100℃. In this work, the effects of substitution of Co for Ni on the martensitic and magnetic transformations, crystal structures and phase equilibria in Ni-Ca-Fe alloys were studied. Ni-Ga-Fe-Co alloys were prepared by induction melting under an argon atmosphere. Small pieces of specimens were taken from the ingot and homogenized at 1433 K for 24 h followed by quenching in water. The obtained specimens were aged at 773 K for 24 h and then quenched. The compositions of each phase were determined by energy dispersion X-ray spectroscopy (El)X). The martensitic transformation temperatures and Tc were measured by differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM) measurement. The crystal structure of martensite phase was observed by X-ray diffractmeter (XRD) and transmission electron microscope (TEM). The Curie temperature Tc was increased with increasing Co content while the martensitic transformation temperature slightly decreased. In the Ni(54-x) Ga27 Fe19 Cox, Tc increases from 303 K to 408 K with increasing CO content from x=0 to x=6. The crystal structure of the martensite phase and the phase equiribria in the Ni-Fe-Ga-Co alloys will be also presented.  相似文献   

11.
A series of Mg2-xNdxNi(x=0.05,0.1,0.2,0.3)alloys and Mg1.95RE0.05Ni(RE= La,Ce,Pr,Nd,Y)ternary alloys were prepared by ball milling of mixted powder of Mg,Ni,RE and sintering under the protection of argon.XRD analysis shows that Mg2-xNdxNi(x=0.05,0.1)and Mg1.95RE0.05Ni consist of single phase with the same crystal structure as Mg2Ni.While three-phase alloys including Mg2Ni,NdNi and NdMgNi4 were formed in Mg1.8Nd0.2Ni and Mg1.7Nd0.3Ni alloys respectively.The lattice constants of Mg2Ni in those ternary alloys were calculated.The decomposition of Mg2Ni occurs in the milling process of Mg2Ni and Mg1.95RE0.05 Ni alloys respectively.For the latter,another earlier reaction occurs in milling process,which means that atoms of RE are separated from crystal structure of Mg2Ni and form relevant oxides by combination with oxygen existed in argon atmosphere.  相似文献   

12.
添加钕对Mg2Ni储氢合金的结构和电极性能的影响   总被引:2,自引:1,他引:2  
利用两步法制备了一系列添加Nd的三元Mg2-xNdxNi合金。XRD分析证实,当x=0.05,0.1时,制得的三元Mg2-xNdxNi合金均为Mg2Ni单相合金;三元Mg18Nd0.2Ni(x=0.2,0.3)合金为三相合金,三相分别为Mg2Ni,NdNi,NdMgNi4。模拟电池测试结果表明,同Mg2Ni合金相比,球磨10h的三元Mg1.8Nd0.2Ni合金和Mg17Nd03Ni合金电极的放电容量提高明显,且Mg17Nd03Ni合金电极的循环性能有明显改善。这极有可能与合金中NdMgNi4相的存在以及球磨形成的微结构有关。  相似文献   

13.
新型(Fe,Co)-Zr-RE-B非晶合金的热稳定性和磁性   总被引:1,自引:0,他引:1  
李福山  乔祎  张涛  关绍康  沈宁福 《稀土》2005,26(3):35-38
利用旋铸技术制备了一种新型的含稀土元素的铁基非晶合金。研究了Nd含量对Fe70Co8Zr7-xNdxB15(x=0~6%原子数分数)合金的非晶形成能力、热稳定性和磁性能的影响。当该合金系的Nd含量在0~6%(原子数分数)变化时,其饱和磁感应强度(Js)在1.10T~1.37T范围内变化,矫顽力(Hc)在2.28A/m~8.15A/m范围内变化。Js随Nd含量的增加而增加,当Nd含量为2%和3%时,其Hc值均在3A/m以下,且在Nd含量为2%时,具有最高的非晶形成能力(glassformationability简称GFA)即大的ΔTx(达61K);同时又有良好的软磁性能,其Js和Hc值分别为1.25T和2.28A/m。经对比得出,Fe70Co8Zr5RE2B15(RE=Ce、Pr、Gd和Tb)合金与Fe70Co8Zr5Nd2B15具有相近的非晶形成能力和磁性能。  相似文献   

14.
The Ce-substituted(Nd_(1-x)Ce_x)_(12.2) Fe_(81.6) B_(6.2)(x=0.0, 0.2, 0.4, 0.6) nanocrystalline ribbons were prepared by annealing amorphous ribbons from melt spinning. It is found that all ribbons are in a multiphase state consisting of a-Fe phase, Nd(Ce)-rich phases and RE_2 Fe_(14) B(RE = Nd, Ce) phases. However, the coercivity of all annealed ribbons can reach a considerably high value without doping any heavy rare earth or other coercivity enhanced elements. A strong intergranular exchange coupling appears in these nanocrystalline ribbons. The Nd_(12.2) Fe_(81.6) B_(6.2) ribbons with multiphase have a coercivity of about 11.3 k Oe, and the coercivity decreases slightly with increasing Ce content. A coercivity of 7.5 kOe can be obtained when60 at% of Nd is replaced by Ce(x = 0.6) due to the grain refinement and the strong intergranular exchange coupling. This provides a practical approach of fabricating high coercivity Ce-substituted Nd-Fe-B materials.  相似文献   

15.
The influences of milling time and Ce content on the electrochemical property and micro structure of asmilled Mg_(1-x)Ce_xNi_(0.9)Al_(0.1)(x=0,0.02,0.04,0.06,0.08)+50 wt%Ni alloys were investigated systematically.The as-milled alloys have an outstanding activation property.The cycle stability conspicuously grows up with milling time and Ce proportion increasing.The capacity retention rate at 100 th cycle of x=0.02 alloy augments from 47% to 63% when prolonging milling time from 5 to 30 h and it grows from55% to 82% for the 30 h milled alloy with Ce content growing from 0 to 0.08.The discharge capacity of x=0.02 alloy grows up invariably with milling time prolonging,while that of the 30 h milled alloys has the maximal value of 578.4 mAh/g with Ce content increasing.Moreover,the electrochemical kinetic properties of alloys significantly improve with milling duration extending,while they have the maximal values with Ce proportion varying.  相似文献   

16.
为了进一步提高PbTe系列合金的热电性能和降低生产成本,采用溶剂热反应合成平均粒度为500 nm的PbTe粉末,以所合成的PbTe粉末为主要原料通过封管熔炼法制备(AgSbTe2)x(Pb0.5SnvTe) 1-x(x=0,0.05,0.1,0.15,0.2)系合金.所得合金锭经过高能球磨制成微米级的超细合金粉,再通过快速热压烧结制备测试用的多晶试样,所有试样的相对密度均达到90%以上.通过XRD和SEM等手段分析材料的物相组成和微观结构,研究x的变化对于该体系材料热电性能(电阻率、Seebeck系数、热导率和ZT值)的影响.研究表明,当X取值为0.1时该体系材料的热电性能得到最优化,在575 K时取得最人的ZT值为1.093.  相似文献   

17.
Hydrogen storage composites Nd2Mg17-50 wt.%Ni-x wt.%CeO2(x=0, 0.5, 1.0, 1.5, 2.0) were obtained by induction-ball milling method. The catalytic effect of CeO2 on hydriding kinetics of Nd2Mg17-50 wt.%Ni composite was investigated. X-ray diffraction(XRD) and high resolution transmission electron microscopy(HRTEM), selected area electron diffraction(SAED) analyses showed that Nd2Mg17-50 wt.%Ni alloy had a multiphase structure, consisting of NdMg12, NdMg2Ni, Mg2Ni and Ni phases and the addition of catalyst CeO2 prompted the composites to be partly transformed into amorphous strucutre. The CeO2 improved the maximum hydrogen capacity of Nd2Mg17-50 wt.%Ni alloy from 3.192 wt.% to 3.376 wt.%(x=1.0). What’s more, the increment of diffusion coefficient D led to the faster hydriding kinetics, which was calculated by Avrami-Erofeev equation. The dehydrogenation temperature reduced from 515.54 to 504.72 K was mainly caused by the decrease of activation energy from 93.28 to 69.36 kJ /mol, which was proved by the Kissinger equation.  相似文献   

18.
In order to ameliorate the electrochemical cycle stability of the RE-Mg-Ni based A2B7-type electrode alloys, the Mg content in the alloy was reduced and La in the alloy was partially substituted by Sm. The La0.8-xSmxMg0.2Ni3.15Co0.2Al0.1Si0.05 (x=0, 0.1, 0.2, 0.3, 0.4) elec-trode alloys were fabricated by casting and annealing. The microstructures of the as-cast and annealed alloys were characterized by XRD and SEM. The electrochemical hydrogen storage characteristics of the as-cast and annealed alloys were measured. The results revealed that all of the experimental alloys mainly consisted of two phases: (La,Mg)2Ni7 phase with the hexagonal Ce2Ni7-type structure and LaNi5 phase with the hexagonal CaCu5-type structure. As Sm content grew from 0 to 0.4, the discharge capacity and the high rate discharge ability (HRD) first in-creased and then decreased for the as-cast and annealed alloys, whereas the capacity retaining rate (S100) after 100 cycles increased continuously.  相似文献   

19.
In this paper,the as-cast Mg_(85)Cu_5Ni_(10) alloy and Mg_(85)Cu_5Ni_(10)-x wt% CeO_2(x=0,4,8) alloys were prepared successfully by vacuum induction smelting and ball milling.The microstructure,hydrogen absorption/desorption kinetics and thermodynamics performances of the alloys were studied in detail.The results show that the Mg_(85)Cu_5Ni_(10) alloys with CeO_2 additive have faster hydrogenation/dehydrogenation kinetics and better thermodynamic properties.The dehydrogenation activation energy is reduced to 81.211 kJ/mol from 119.142 by adding 8 wt% CeO_2.CeO_2 contributes to producing structural defects,nanocrystallines,grain boundaries,partial amorphous,lattice dislocations and cracks which are favorable to provide more hydrogen diffusion channels during hydriding/dehydriding process.Meanwhile,CeO_2 additive weakens the bond energy of Mg-H.These micro structural changes caused by CeO_2 additive improve the hydrogen storage performance of Mg_(85)Cu_5Ni_(10) markedly.  相似文献   

20.
Aiming at the improvement of the cyclic stability of La-Mg-Ni system (PuNi3-type) hydrogen storage alloy, Ni in the alloy was partly substituted by Fe. The electrode alloys of La0.7Mg0.3Co0.45Ni255-xFex (x=0, 0.1, 0.2, 0.3, 0.4) were prepared by casting and rapid quenching. The influence of the quenching on cyclic stability as well as structure of the alloys was investigated in detail. The results of electrochemical measurement indicated that rapid quenching significantly improved cyclic stability. When the quenching rate rose from 0 (As-cast was defined as a quenching rate of 0 m/s) to 30 m/s, the cyclic life of Fe-free alloy (x=-0) increased from 81 to 105 cycles, and for alloy containing Fe(x=0.4), it grew from 106 to 166 cycles at a current density of 600 mA/g. The results obtained by XRD, TEM and SEM revealed that the as-cast and quenched alloys had multiphase structures, including two major phases (La, Mg)Ni3 and LaNi5 as well as an imptLrity phase LaNi2. Rapid quenching helped the formation of an amorphous-like structure in Fe containing alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号