首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quick and accurate detecting the error of NC machine tool and performing the error compensation are important to improve the machining accuracy of NC machine tool.Currently,there are many methods for detecting the geometric accuracy of NC machine tool.However,these methods have deficiencies in detection efficiency and accuracy as well as in versatility.In the paper,a method with laser tracker based on the multi-station and time-sharing measurement principle is proposed,and this method can rapidly and accurately detect the geometric accuracy of NC machine tool.The machine tool is controlled to move in the preset path in a 3D space or 2D plane,and a laser tracker is used to measure the same motion trajectory of the machine tool successively at different base stations.The original algorithm for multi-station and time-sharing measurement is improved.The space coordinates of the measuring point obtained by the laser tracker are taken as parameter values,and the initial position of each base point can be determined.The redundant equation concerning the base point calibration can be established by the distance information of the laser tracker,and the position of each base point is further determined by solving the equation with least squares method,then the space coordinates of each measuring point can be calibrated.The singular matrix does not occur in calculation with the improved algorithm,which overcomes the limitations of the original algorithm,that the motion trajectory of machine tool is in a 3D space and there exits height difference between the base stations.Adopting the improved algorithm can expand the application of multi-station and time-sharing measurement,and can meet the quick and accurate detecting requirements for different types of NC machine tool.  相似文献   

2.
The linear and rotary axes are fundamental parts of multi-axis machine tools. The geometric error components of the axes must be measured for motion error compensation to improve the accuracy of the machine tools. In this paper, a simple method named the three-point method is proposed to measure the geometric error of the linear and rotary axes of the machine tools using a laser tracker. A sequential multilateration method, where uncertainty is verified through simulation, is applied to measure the 3D coordinates. Three non-collinear points fixed on the stage of each axis are selected. The coordinates of these points are simultaneously measured using a laser tracker to obtain their volumetric errors by comparing these coordinates with ideal values. Numerous equations can be established using the geometric error models of each axis. The geometric error components can be obtained by solving these equations. The validity of the proposed method is verified through a series of experiments. The results indicate that the proposed method can measure the geometric error of the axes to compensate for the errors in multi-axis machine tools.  相似文献   

3.
Geometric error component identification is needed to realize the geometric error compensation which can significantly enhance the accuracy of multi-axis machine tools. Laser tracker has been applied to geometric error identification of machine tools increasingly due to its high capability in 3D metrology. A general method, based on point measurement using a laser tracker is developed for identifying the geometric error components of multi-axis machine tools in this study. By using this method, all the component errors and location errors of each axis (including the linear axis and rotary axis) of the multi-axis machine tools can be measured. Three pre-described targets are fixed on the stage of the under-test axis which moves step by step. The coordinates of the three targets at every step are determined by a laser tracker based on the sequential multilateration method. The volumetric errors of these three target points at each step can be obtained by comparing the measured values of the target points’ coordinates with the ideal values. Then, nine equations can be established by inversely applying the geometric error model of the axis under test, which can explicitly describe the relationship between the geometric error components and volumetric error components, and then the component errors of this axis can be obtained by solving these equations. The location errors of the axis under test can be determined through the curve fitting. In brief, all the geometric error components of a single axis of multi-axis machine tools can be measured by the proposed method. The validity of the proposed method is verified through a series of experiments, and the experimental results indicate that the proposed method is capable of identifying all the geometric error components of multi-axis machine tools of arbitrary configuration.  相似文献   

4.
为了降低数控机床几何误差,提升加工精度,提出机械制造业数控机床几何误差自动控制方法。通过激光跟踪仪辨识机械制造业数控机床的几何误差,采用快速定位补偿算法与圆弧插补补偿算法相结合的方法补偿数控机床几何误差。利用计算机辅助制造软件生成刀位文件,依据刀位文件生成数控机床加工程序,通过补偿控制器生成数控机床各轴运动的控制指令,数控机床伺服系统接收控制指令后,自动控制数控机床各轴运动,以达到数控机床几何误差自动控制的目的。实验结果表明,采用该方法自动控制数控机床几何误差后,方向与角度的几何误差分别低于0.03 mm与0.1°,实际应用效果较好。  相似文献   

5.
The theory and algorithm of the homogeneous transformation matrix (HTM) method are applied in establishing the kinematic error model of five-axis machining tool with two-axis turntable. Based on this model, a new method for the kinematic error separation in five-axis numerical control (NC) machining tool is proposed. In this study, three types of simultaneous three-axis control motions are designed for each rotary axis to identify the deviations. In the measurement, two translational axes and one rotary axis are simultaneously controlled to keep a constant distance between the tool and the worktable. Telescoping double ball bar is used to measure the relative distance between the spindle and the worktable in the motion of NC machining tool. Finally, the value measured by telescoping double ball bar is substituted into the model to obtain kinematic error of NC machining tool. Comparison has confirmed that the proposed method is high precision and can be applied to effectively and conveniently measure the five-axis machining tool.  相似文献   

6.
激光跟踪仪测角误差的现场评价   总被引:6,自引:0,他引:6  
激光跟踪仪是基于角度传感和测长技术相结合的球坐标测量系统,其长度测量采用激光干涉测长方法,可直接溯源至激光波长,因此,激光跟踪仪的长度测量精度远高于角度测量精度,相对而言,测角误差就成为评价跟踪仪测量精度的重要指标。为了对现场测量激光跟踪仪的测角误差进行快速有效地评价,采用跟踪仪多站位对空间中测量区域内若干个被测点进行测量,与传统基于角度交汇原理的多站位冗余测量不同,利用各站位所观测的高精度测长值建立误差方程,并通过测长方向的矢量位移对跟踪仪测长误差进行约束,获得被测点三维坐标在跟踪仪水平角和垂直角方向上的改正值,以此来评价激光跟踪仪的测角误差。通过Leica激光跟踪仪AT901-LR进行了多站位测角误差评价实验,在现场测量条件下,跟踪仪水平和垂直方向测角误差约为0.003 mm/m(1σ),符合跟踪仪的测量误差特性。  相似文献   

7.
提出了面向特大型齿轮的激光跟踪多站位定位测量方法以提高特大型齿轮激光跟踪在位测量系统的齿轮定位精度并精确确定测量仪器与被测齿轮位置与姿态的关系。根据激光跟踪仪多站位测量提供的冗余数据优化求解空间两点间共线方程,建立了特大型齿轮激光跟踪多站位测量模型。然后,提出了利用奇异值分解修正多站位测量模型解析矩阵条件数的方法。 实验结果表明,使用多站位测量模型求得的不同站位待测点间距离的标准差的均值为0.008 mm,明显小于直接在不同站位下测量的标准差均值0.024 mm,表明多站位测量模型具有良好精度控制效果。本文的研究提高了齿轮定位时所需测量点的三维测量精度,为特大型齿轮激光跟踪多站位测量系统建立齿轮坐标模型提供了可靠的数据来源。  相似文献   

8.
介绍了激光干涉法测三面静压转台回转精度的原理及测量方法,分析了激光干涉仪在回转轴运动位置精度测量中的主要误差诱因;作出了角度测量中正弦近似误差特性曲线,并建立了该测量误差的数学模型,为机床的运动精度误差补偿提供了数据。经现场检验,该方案简便易行,成效显著。  相似文献   

9.
基于激光干涉仪的旋转轴误差快速检定方法   总被引:1,自引:0,他引:1       下载免费PDF全文
皮世威  刘强  孙鹏鹏 《仪器仪表学报》2017,38(10):2484-2491
为了提升五轴数控机床各旋转轴精度,解决旋转轴几何误差难以测量的问题,提出了一种基于激光干涉仪的旋转轴几何精度快速测量方法。该方法针对AC双转台和BC摆头转台的结构特性,采用旋转轴与直线轴联动的测量技术,可以避免传统测量方法对旋转轴中心的依赖性,推导了测量中直线轴转角误差与直线度对旋转轴几何误差约束关系,在保证精度的同时减少了测量过程中的设备安装调试时间,实现了五轴机床旋转轴转角误差、重复转角误差以及反向间隙的快速测量和补偿。对实际五轴机床AC双转台几何精度进行检定,提高了旋转轴的几何精度,实验证明该测量方法具有很强的工程应用价值。  相似文献   

10.
考虑飞秒激光跟踪仪仪器轴系的几何误差会影响仪器的指向精度并最终影响坐标测量精度,本文研究了激光光轴与竖轴的几何误差对仪器测量精度的影响。提出了激光光轴与竖轴的同轴度标定方法,以降低其不重合带来的跟踪测量误差。首先,基于几何光学原理建立了光轴与竖轴的几何误差模型,分别分析了光轴与竖轴的倾斜与平移误差对仪器测角精度的影响。然后,针对设计的仪器提出了基于旋转成像原理的光轴与竖轴同轴度的检测方法,并设计了一套同轴度检测装置。最后,基于该检测装置,通过调节两组双光楔完成了激光光轴与竖轴的倾斜与平移误差的标定。结果显示,经标定校准后激光光轴与竖轴的角度误差为3.4″;平移误差为26.1μm,得到的结果为仪器后续建立误差补偿模型奠定了基础。  相似文献   

11.
随着红外技术的不断发展,红外成像定位系统在现代工程测量中的应用越来越广泛。大部分测量系统一般都会选取红外相机的光轴作为系统的参照基准,因此红外相机的光轴标定的准确性将直接决定整套测量系统的准确度等级。激光跟踪仪是空间尺寸测量的一种常用仪器,它可以建立笛卡尔三维坐标系将空间任意点以坐标点形式表示出来,通过坐标点确定系统中点、线、面之间的几何位置关系。利用三靶球位置坐标原理将红外相机的光轴等虚拟参数以空间坐标点的方式标示出来,为后续试验人员的校准定位工作提供一定的技术依据和参考。  相似文献   

12.
熊平 《机电工程》2014,(2):139-144
针对大型数控龙门铣床几何误差的问题,建立了大型数控龙门铣床的几何误差模型,分析了大型数控龙门铣床的几何误差源;利用API(T3)激光跟踪仪高精度大尺寸的测量特点及数据处理能力,提出了X、Y、Z轴线位移误差、角位移误差及各轴间垂直度误差的辨识算法,通过激光测量与计算准确地辨识了大型数控龙门铣床的几何误差;建立了大型数控龙门铣床加工空间几何误差数学模型,采用基于对象的事件驱动机制的程序设计语言Visual Basic开发了几何误差补偿软件,实现了几何误差补偿;现场检测了大型数控龙门铣床空行程平面运动轨迹及工件的平面度。研究结果表明,该方法使平面加工精度提高了50.77%,并验证了几何误差模型的正确性及几何误差补偿方法的有效性。  相似文献   

13.
Drilling and riveting are commonly used in aircraft panel assembly process. Due to the fixture positioning error and the deformation of workpiece, the real position and orientation of the workpiece as well as its 3D geometry at the drilling position varies from the nominal CAD model, which would cause an unfavorable impact on assembly quality. Therefore, surface normal measurement and adjustment at the drilling position is of great importance. In this paper, a fast and effective non-contact measurement method for normal vector and height of moderately curved surfaces is accomplished by four laser displacement sensors, and a dedicated NC machine tool is also developed for normal adjustment. Firstly, a novel sensor calibration method based on laser tracker is introduced, which can acquire the sensors’ position and orientation in Tool Coordinate System (TCS) at the same time. The normal vector at hole position is calculated by cross product of any two non-parallel vectors constructed by the four laser projection points on the panel surface. Secondly, the kinematic model of the machine tool is established to calculate the adjustment of each axis of the machine tool with the Homogeneous Transformation Matrix (HTM). Besides, an innovative method to identify the distance of two rotary centers based on two laser interferometers is proposed. Finally, a series of experiments are conducted to validate the feasibility of the proposed method. The results show that the angle deviation can be reduced to less than 0.5° after adjustment, while the accuracy of the surface height is ±0.04 mm.  相似文献   

14.
使用圆柱立铣刀数控铣削加工链轮,采用直角坐标系(直线轴)附加旋转轴的控制方式:应用直线轴控制多段曲线的连接。完成链轮各单齿齿形的数控加工,使用数控回转工作台完成链轮零件的分齿运动,利用子程序来循环重复上述运动。此加工方式相比二维坐标轴数控加工链轮的控制具有更为理想的加工效果。并且在保证零件设计基准、装夹定位基准和装配基准重合的基础上,应用子程序有效地保证了链轮各齿形尺寸精度的一致性;使用旋转坐标控制,有效地保证和降低了链轮轮齿的分齿误差。在数控铣床上使用普通圆盘工作台,利用暂停指令手动进行链轮齿形分齿运动的做法.更加完善和拓宽了数控技术具体应用的实用性。  相似文献   

15.
A machining test of cone frustum, described in NAS (National Aerospace Standard) 979, is widely accepted by machine tool builders to evaluate the machining performance of five-axis machine tools. This paper discusses the influence of various error motions of rotary axes on a five-axis machine tool on the machining geometric accuracy of cone frustum machined by this test. Position-independent geometric errors, or location errors, associated with rotary axes, such as the squareness error of a rotary axis and a linear axis, can be seen as the most fundamental errors in five-axis kinematics. More complex errors, such as the deformation caused by the gravity, the pure radial error motion of a rotary axis, the angular positioning error of a rotary axis, can be modeled as position-dependent geometric errors of a rotary axis. This paper first describes a kinematic model of a five-axis machine tool under position-independent and position-dependent geometric errors associated with rotary axes. The influence of each error on machining geometric accuracy of a cone frustum is simulated by using this model. From these simulations, we show that some critical errors associated with a rotary axis impose no or negligibly small effect on the machining error. An experimental case study is presented to demonstrate the application of R-test to measure the enlargement of a periodic radial error motion of C-axis with B-axis rotation, which is shown by present numerical simulations to be among potentially critical error factors for cone frustum machining test.  相似文献   

16.
Four methods aiming at measuring rotary machine axis center trace are discussed in detail. The comparative analysis is made on some aspects such as measurement accuracy, on-machine characteristics, feasibility, practical operation convenience and the integrity of measurement information. In order to simplify measurement, the axis profile error is ignored in traditional condition, while the measurement accuracy will be reduced. The 3-point method that the axis profile error is firstly separated has better real time character, at the same time, not only the axis motion error but also the axis profile error can be measured. All of those information can be used to diagnose the fault origin. The analysis result is proved to be correct by the experiment.  相似文献   

17.
现场大空间测量中精密三维坐标控制网的建立   总被引:6,自引:0,他引:6  
全局测量与精度控制是超大空间内精密测量的基础,决定着整体测量的性能和适用性。为提高整体空间测量精度,同时解决定向及尺度问题,必须在全局空间内布设高精度测量控制网。三维坐标测量作为几何量测量的重要代表,是建立控制网最直接且约束最强的控制条件。为建立大空间精密三维坐标控制网,采用激光跟踪仪多站位对空间全局控制点进行三维坐标测量,结合奇异值分解算法完成各站位的方位定向,并利用激光跟踪仪极高精度的测距值作为约束,对跟踪仪测角误差进行优化,进一步提高坐标控制网的精度。将该控制网建立方法应用于某飞机机翼表面形貌测量,实现激光跟踪仪全局控制与终端摄影测量的高效组合,以不同若干站位下全局控制点间距离比对结果表明该控制网对现场测量精度和可靠性的提高具有良好效果。  相似文献   

18.
Many circular motion measuring methods for NC machine tools have been proposed, however, the drawback common to many of these methods is the restriction on the radius size due to the short measuring range of the displacement transducers used. Moreover, most of these measurement tools are specialized, and can only perform circular test path measurements. A circularity test method using a laser displacement interferometer and a rotary encoder has been developed. The measuring method features a much longer range of motion than ordinal circular test methods such as the double ball bar (DBB) method and, therefore, the radius restriction on these measurements is greatly reduced. Moreover, this measuring system can also be used for the evaluation of positioning accuracy and other more complex test paths.

The proposed device consists primarily of a laser displacement interferometer and a rotary encoder. The holders for the interferometer head and the retroreflector are connected with a stainless steel rod. The retroreflector holder has a synthetic resin linear bearing allowing it to move relative to the interferometer head so that both optical components are always facing each other. The laser interferometer measures the change in distance between the interferometer head and the retroreflector, and the rotary encoder measures the rotation angle of the stainless steel rod.

In this paper, the background, measuring principle and apparatus structure are briefly described. The experimental setup is also presented. The apparatus was employed in several measuring experiments, including circularity tests for a vertical machining center. The results from these experiments support the validity of this measurement apparatus.  相似文献   


19.
面向对象的大尺寸测量不确定度分析   总被引:6,自引:4,他引:2  
测量结果必须说明不确定度。常规尺寸的解析法和标准比对法难以适用于评价大尺寸测量不确定度,尤其是特定拟合任务结果的不确定度。针对大尺寸测量的特殊性,研究基于蒙特卡罗的评价方法评价大尺寸特定测量对象的不确定度,并用计算机可视化直观表示离散点云。利用离线仿真评价测量不确定度,用于设计最优采样策略。以激光跟踪仪测量大型圆形截面工件分析为例,给出测点对称、均匀分布和半径约束等优化测量思想。最后应用于激光跟踪仪测量隧道构件的实例当中。仿真和实际实验表明,蒙特卡罗评价和离散点云表示法可准确、直观评价大尺寸测量特定测量对象的不确定度,制定的最优采样策略可提高测量精度。  相似文献   

20.
董维新  姚瑶 《机电工程》2013,(12):1481-1484
针对全闭环数控回转轴的关键检测元件—圆光栅的安装误差引起回转轴定位精度差的问题,基于圆光栅测量角度的工作原理,分析了圆光栅在安装时由于光栅定位端面的跳动误差对莫尔条纹的影响规律,推导出了相应的数学关系,建立了回转轴定位误差与光栅定位端面的跳动误差之间的数学模型.数值仿真表明当圆光栅出现端面定位安装误差后,回转轴回转一周,输出的莫尔条纹光强变化经历了一个周期,近似为一正弦曲线.针对上述理论分析,在加工中心回转轴C轴上进行了实验研究,结果表明,通过调整圆光栅端面的跳动误差从原来的70 μm到16 μm,利用高精密单频激光干涉仪对回转轴的定位误差进行了检测,两次测量的定位误差曲线均为正弦曲线,且回转轴的定位精度提高了3倍.研究结果表明,减小圆光栅定位端面的轴向跳动误差可有效提高回转轴的定位精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号