首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
在40Gb/s的光纤通信系统中,用三段模拟器模拟光纤传输中的一阶与二阶偏振模色散(PMD),采用单偏振态的偏振度(DOP)作为多级PMD补偿器的反馈信号,对归零(RZ)码、非归零(NRZ)码、载波抑制归零(CSRZ)码和啁啾归零(CRZ)码分别进行四个自由度的一级、六个自由度的二级和十个自由度的三级PMD补偿器的补偿.仿真得到了四种码型的DOP与误码率(BER)的关系,同时补偿后的BER、DOP和PMD的变化关系表明,对RZ和NRZ码采用二级补偿器的效果比一级和三级补偿器要好得多,对CSRZ码和CRZ码采用单偏振态的DOP作为反馈信号进行PMD补偿的效果并不理想.  相似文献   

2.
Optically preamplified receiver performance according to the vestigial sideband (VSB) filtering has been numerically investigated for 40-Gb/s optical signals modulated with nonreturn-to-zero, duobinary nonreturn-to-zero (NRZ), return-to-zero (RZ), carrier-suppressed RZ, and duobinary carrier-suppressed RZ formats. The VSB filtering enables the spectral widths of NRZ, duobinary NRZ, and RZ signals to be reduced without severe power penalties at the receiver. On the other hand, carrier-suppressed RZ and duobinary carrier-suppressed RZ signals have no large advantages over VSB filtering because of the characteristics of their signals. Our results suggest that RZ signals are the most suitable modulation format for VSB filtering, without considering the filter loss, because of the tolerance of the intersymbol interference and a large spectral width. However, duobinary NRZ signals are the most suitable modulation format for VSB filtering, considering the filter loss, because of their narrow spectral width.  相似文献   

3.
Two optical return-to-zero (RZ) modulation techniques are discussed, both based on a single Mach-Zehnder modulator driven by non-return-to-zero (NRZ) electrical signals. Both methods allow for continuously electrically tunable duty cycles and lead to chirped RZ formats. We demonstrate and discuss two RZ transmitter setups that generate optical RZ signals with electrically continuously tunable duty cycle using a single, NRZ-driven Mach-Zehnder modulator.  相似文献   

4.
A comparison of carrier-suppressed return-to-zero (CSRZ) and single sideband return-to-zero (SSB-RZ) formats is made in an attempt to find the optimum modulation format for high bit rate optical transmission systems. Our results show that CSRZ is superior to return-to-zero (RZ) and SSB-RZ with respect to signal degradation due to Kerr nonlinearities and chromatic dispersion in wavelength division multiplexing (WDM) as well as in single-channel 40-Gb/s systems over standard single-mode fibers (SSMF). It is shown that CSRZ enables a maximum spectral efficiency of approximately 0.7 (b/s)/Hz in a N×40 Gb/s WDM system with equally polarized channels. Furthermore, the CSRZ format in N×40 Gb/s WDM systems shows no further signal degradation compared to single-channel transmission  相似文献   

5.
采用滤波技术提高不同码型差分群时延动态范围研究   总被引:1,自引:1,他引:0  
采用宽带滤波、窄带滤波和非对称滤波3种滤波技术,将其分别应用于归零码(RZ)、载波制RZ(CSRZ)、差分相移键控RZ(RZ-DPSK)和差分相移钯控的载波抑制RZ(CSRZ—DPSK)4种不同码型的系统中,数值模拟结果表明,滤波技术确能提高差分群时延(DGD)的监控范围;在3种滤波技术中,以窄带滤波技术适合每种码型并使用DGD响应范围最大而具有更好的优势。实验验证了滤波技术提高DGD响应范围的有效性。  相似文献   

6.
This article discusses the various schemes for generating typical advanced modulation formats in terms of configuration and cost, and particularly presents some recently proposed configurations for optical data generation with better performance or reduced components, including pulsed multichannel source generation for return-to-zero (RZ)-based WDM application, multichannel dual-mode pulse source for carrier-suppressed RZ (CSRZ)-based WDM application, CSRZ and CSRZ differential phase shift keyed (DPSK) signal generation using a single Mach-Zehnder modulator (MZM) together with an electrical mixer, chirped RZ generation with reduced modulator number, and RZ/CSRZ-DPSK generation using a single dual-drive MZM and optical minimum shift keying (MSK).  相似文献   

7.
We describe a detailed numerical investigation on the relative merits of gain flattened distributed Raman amplification (DRA) and discrete gain flattened amplifiers. We simulate a system with forty 40-Gb/s channels spaced at 100 GHz and compare the performance of three different modulation formats nonreturn-to-zero (NRZ), return-to-zero (RZ) and carrier-suppressed RZ (CS-RZ). Three types of amplifiers, multifrequency backward- and forward-pumped DRAs, and an idealized discrete gain flattened amplifier are examined for various signal powers and transmission distances. For the backward-pumped DRA, we also describe calculated tolerance limits imposed by incomplete dispersion slope compensation and polarization mode dispersion (PMD) level  相似文献   

8.
This paper proposes a novel duobinary-mode-splitting scheme that uses wideband phase-shift-keying (PSK)/amplitude-shift-keying (ASK) conversion for modulation and detection of bandwidth-reduced return-to-zero (RZ) modulation formats. We have first demonstrated that the proposed scheme greatly simplifies the modulation process of the duobinary carrier-suppressed RZ format (DCS-RZ) based on baseband binary nonreturn-to-zero (NRZ) modulation. We also proposed carrier-suppressed RZ differential-phase-shift-keying format (CS-RZ DPSK) as a novel bandwidth-reduced RZ format by applying the proposed scheme in the detection process. These novel RZ formats are shown to be very useful for dense wavelength-division multiplexed (DWDM) transport systems using high-speed channels, over 40 Gb/s, with spectrum efficiencies higher than 0.4 b/s/Hz. We demonstrate that the proposed modulation and detection scheme greatly simplifies the DWDM transmitter and receiver configuration if the periodicity of the optical PSK/ASK conversion filter equals the WDM channel spacing. The large tolerance of the formats against several fiber nonlinearities and their wide dispersion tolerance characteristics are tested at the channel rate of 43 Gb/s with 100-GHz spacing. The novel CS-RZ DPSK format offers higher nonlinearity tolerance against cross-phase modulation than does the DCS-RZ format.  相似文献   

9.
The design of optical communication networks with network switching elements operating in the optical domain requires careful system analysis and potentially stringent component requirements. We consider here network elements such as transparent optical cross-connects that demultiplex WDM signals, optically switch individual channels, and then multiplex the wavelengths together again before transmission into the next span. Network element optical impairments that can significantly degrade signal quality are in-band (same wavelength) crosstalk and signal distortion from filter concatenation effects. We examine tradeoffs between accumulated crosstalk and filter distortion in the context of the optical filters used in the network elements and demonstrate the balance that must be struck in the design of the filters and network system. As an example, we study a 10-Gb/s network with 50-GHz channel spacing, examining both nonreturn-to-zero (NRZ) and return-to-zero (RZ) modulation formats. In both cases, we find optimal filter bandwidths that minimize the total signal degradation measured in terms of Q penalty, including filter misalignment statistics and signal laser frequency offset. A model is developed to treat the statistical nature of filter misalignment and its effect on filter-generated in-band crosstalk. The optical node penalties suffered by RZ signals can be significantly higher than that of NRZ signals and must be considered when estimating overall system reach.  相似文献   

10.
40Gb/s光纤通信系统中不同码型传输特性的实验研究   总被引:8,自引:3,他引:8  
在高速光纤通信系统中码型的选择是决定系统传输质量和光谱效率的主要因素。码型的选择和信道速率、信道波长间隔、光放大器的选择、光放大器放置间隔、光纤的类型、色散管理策略等各种因素密切相关。分析了非归零码(NRZ)、归零码(RZ)和载波抑制归零码(CSRZ)码型的产生方式及特点。采用单信道和掺铒光纤放大器(EDFA)放大方式对三种码型进行了40Gb/s的100kmG.652光纤通信传输实验。比较了三种码型的系统传输持性、最佳入纤功率和不同入纤功率下的功率代价:载波抑制归零码最佳入纤功率为9dBm,功率代价小于非归零码和归零码。结果表明,在相同的色散补偿条件下,载波抑制归零码比归零码和非归零码有更优的非线性容忍度。  相似文献   

11.
We present a packet-by-packet contention resolution scheme that combines packet detection, optical space switching, and wavelength conversion performed in the optical domain by integrated optical switches. The packet detection circuit provides the control signals required to deflect and wavelength-convert the contending packets so that all the packets are forwarded to the same output without any collision or packet droppings. We demonstrate the compatibility of the scheme with both nonreturn-to-zero (NRZ) and return-to-zero (RZ) modulation formats by recording error-free operation for 10-Gb/s NRZ and 40-Gb/s RZ packet-mode traffic  相似文献   

12.
Based on the practicability issue, using the standard single-mode fiber (SSMF) in the transmission line is important for high-speed optical transmission. Here, we propose and experimentally demonstrate a 640-km SSMF-based high-speed dense wavelength-division-multiplexing (160times114 Gb/s) transmission system in 25-GHz channel spacing employing polarization-division-multiplexing return-to-zero (RZ) eight quadrature amplitude modulation format and digital coherent detection. The filtering effects for RZ and nonreturn-to-zero formats have also been probed in this investigation. For all 160 channels (1530-1560 nm, cover the whole C-band), the bit-error rate is smaller than 2times10-3 without Raman amplification, optical dispersion compensation, and any special fiber in this straight-line slink.  相似文献   

13.
We propose and demonstrate a new type of degree-of-polarization (DOP)-based differential-group-delay (DGD) monitor using an optical filter such that the DGD monitoring range and DOP dynamic range are dramatically increased. We apply this technique to varying pulsewidth return-to-zero (RZ), carrier-suppressed RZ (CSRZ), and alternate-chirped RZ (ACRZ) signals and show that by optimally setting the position, bandwidth, and shape of a filter, we can double the DGD monitoring range compared to traditional DOP-based DGD monitors. Using our technique, the DGD monitoring ranges for 10, 20, and 40 Gb/s /spl sim/12.5-ps pulsewidth RZ signals are increased by 32, 33, and 12 ps, respectively. We also show that a narrow-band optical filter, offset from the center of the optical spectrum by the bit-rate frequency, can double the dynamic range of DOP-based DGD monitors for non-RZ (NRZ) signals.  相似文献   

14.
Optimum filter bandwidths for optically preamplified NRZ receivers   总被引:1,自引:0,他引:1  
We present a comprehensive treatment of optically preamplified direct detection receivers for non-return-to-zero (NRZ) and return-to-zero (RZ) on/off keying modulation, taking into account the influence of different (N)RZ optical pulse shapes, specified at the receiver input, and filter transfer functions; optical Fabry-Perot filters (FPFs) and Bragg gratings as well as electrical fifth-order Bessel and first-order RC low-pass filters are considered. We determine optimum optical and electrical filter bandwidths and analyze the impact of bandwidth deviations on receiver sensitivity. Optimum receiver performance relies on a balance between noise and intersymbol interference (ISI) for NRZ transmission, while for RZ reception detection noise has to be traded against filter-induced signal energy rejection. Both for NRZ and 33% duty cycle RZ, optical filter bandwidths of around twice the data rate are found to be optimum. Receivers using RZ coding are shown to closely approach the quantum limit, and thus to outperform NRZ-based systems by several decibels. We further analyze the impact of important degrading effects on receiver sensitivity and optimum receiver bandwidths, including receiver noise, finite extinction ratio, chirp, and optical carrier frequency (or optical filter center frequency) fluctuations  相似文献   

15.
An optical modulation format generation scheme based on spectral filtering and frequency-to-time mapping is experimentally demonstrated. Many modulation formats with continuously adjustable duty radio and bit rate can be formed by changing the dispersion of dispersion element and the bandwidth of shaped spectrum in this scheme. In the experiment, non-return-to-zero (NRZ) signal with bit rate of 29.41 Gbit/s and 1/2 duty ratio return-to-zero (RZ) signal with bit rate of 13.51 Gbit/s are obtained. The maximum bit rate of modulation format signal is also analyzed.  相似文献   

16.
高速密集波分复用系统中的二级调制格式研究   总被引:3,自引:1,他引:3  
论述了强度调制直接检测(IM-DD)高速密集波分复用(DWDM)系统的二级调制原理,并从马赫-曾德尔调制器的传递特性出发推导了四种调制格式[全频率调制归零码(FFMRZ)、半频率调制归零码(HFMRZ)、单边带调制归零码(SSBRZ)、载波抑制归零码(CSRZ)]。根据信号光眼图及归一化频谱描述了各种码型的时频特征。在此基础上分别对各种码型的色散容限、非线性容限进行了数值仿真,通过比较眼图张开度损伤(EOP)发现对于单波长系统载波抑制归零码传输性能最优。最后利用全面的密集波分复用系统模型计算了各种码型的Q因子,发现载波抑制归零码的性能仍然保持最优,这种优势在考虑偏振模色散(PMD)的情况下更为突出。因此载波抑制归零码是强度调制直接检测系统较好的选择。  相似文献   

17.
Gain-saturation-induced self-phase modulation (SPM) leading to pulse distortion in a semiconductor optical amplifier (SOA) is overcome by shifting a tunable optical filter (TOF). A recovered or broadened pulse can be obtained after filtering the amplified pulse in the SOA even if the short pulse is only 2-3 ps long. The input power dynamic range (IPDR) can be strongly increased by shifting the TOF and the direction of the shifted transparent wavelength is different for 10 Gb/s return-to-zero (RZ) or nonreturn-to-zero (NRZ) signals. The transparent wavelength of the TOF should be shifted to a longer wavelength for RZ signals and to a shorter for NRZ signals. 80-Gb/s optical time division multiplexing (OTDM) signal amplification in the SOA is demonstrated for the first time. We also demonstrate that a large IPDR for the 80-Gb/s OTDM signal can be obtained by shifting the TOF  相似文献   

18.
Nonreturn-to-zero (NRZ) and return-to-zero (RZ) signal formats are experimentally and numerically compared for single-channel long-distance transmission in an in-line amplifier system with dispersion management providing average zero dispersion and local nonzero dispersion at an interval equal to the in-line amplifier spacing. Among a 20-ps RZ signal, a 40-ps RZ signal, and an NRZ signal transmitted in 10 Gb/s straight-line experiments, the last signal achieves the longest transmission distance of 6000 km while the others are limited to 4400 km. Numerical simulations explain these results well and show that, along with linear amplified spontaneous emission (ASE) accumulation, signal waveform distortion due to the combined effect of higher order group-velocity dispersion (GVD) and self-phase modulation (SPM) dominates the performance. Nonlinear optical noise enhancement is not obvious because of the fiber dispersion arrangement. Signals with large pulse widths are less affected by the combined effect, while small-width signals yield superior initial signal-to-noise ratio (SNR) as determined by optical noise. A detailed simulation indicates that a pulse width of about 60 ps is optimum for long distance transmission under the fiber dispersion arranged in this paper  相似文献   

19.
40Gb/s光DQPSK传输系统性能分析   总被引:1,自引:0,他引:1  
介绍了光差分正交相移键控(DQPSK)的调制和解调方式,对非归零码(NRZ),归零码(RZ)和载波抑制归零码(CSRZ)进行调制,研究40Gb/s高速传输系统中不同类型的光信号.使用色散补偿方式进行200km的模拟仿真,比较不同码型的传输特性.分析表明CS-RZ-DQPSK调制格式,具有更强的抗色散和偏振模色散能力,在较宽的入纤功率范围内取得最小的眼图张开代价.  相似文献   

20.
光纤布拉格光栅(FBG)以其使用方便、造价低、可靠性高等优势在高速光纤通信系统中逐步得到应用,而其色散补偿能力也一直备受研究者关注。文章对比研究了NRZ、33%RZ和CSRZ三种开关键控(OOK)调制格式在预补偿、对称补偿和后补偿三种FBG色散补偿结构中的传输性能,仿真结果表明OOK调制格式在FBG色散对称补偿结构中具有最好的传输性能。当在FBG色散对称补偿结构中单独考虑非线性效应和偏振模色散(PMD)时33%RZ具有较好的传输特性,而当综合考虑残留色散、非线性效应和PMD时,CSRZ系统传输性能最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号