首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
正流注传播动力学特性随气压湿度的变化   总被引:1,自引:0,他引:1  
为了解流注传播电场测量中大气参数的影响,利用“三电极系统”研究了不同气压湿度条件下正流注的传播电场和传播速度。利用两个光电倍增管检测流注在平行极板间的传播,获得了流注传播电场的概率分布及平均传播速度,得到了无外加脉冲电压时流注传播的“稳态电场”与相对空气密度、湿度间的经验公式,并和其它研究者提出的公式进行了比较。研究表明:流注传播的“起始电场”和“稳态电场”随着外加脉冲电压的减小而增大,随着气压和湿度降低而减小;电场强度相同时,流注平均传播速度随着气压和湿度的增大而减小,其数量级为105m/s。  相似文献   

2.
The influence of humidity on streamer propagation at conditions from the threshold for propagation to those for streamer-induced breakdown was investigated in a uniform field in air at atmospheric pressure. Experiments were carried out in a three electrode arrangement consisting of a 12 cm long parallel-plane gap, with an auxiliary needle in the earthed anode. Positive streamers were initiated by applying at the needle electrode a pulse voltage which varied in amplitude. These propagated towards the upper plane electrode which was stressed by a negative dc voltage. Under natural atmospheric conditions, propagation and breakdown probability curves were obtained for several values of absolute humidity in the range between 5 and 22 g/m3. Thus, distributions of the electric field required for streamer propagation and breakdown were obtained and the associated velocity of propagation and time to breakdown were measured. Besides humidity, the amplitude of the voltage used for streamer initiation and the ambient electric field were considered as influencing parameters on streamer properties. Empirical equations are presented expressing the effects of the above parameters on the intrinsic streamer properties. A comparison with previous work in the literature is made and this leads to the conclusion that the influence of humidity on streamer propagation and breakdown can be placed in a sounder quantitative basis.  相似文献   

3.
In a uniform field arrangement, under direct voltage, positive streamer propagation and breakdown are investigated along cylindrical insulators with different profiles, inserted perpendicularly between two parallel plane electrodes. The basic properties of streamer propagation and breakdown, namely the electric field required for a stable propagation together with the associated velocity and the breakdown field together with time to breakdown, are measured as influenced by the pulse voltage amplitude used for the streamer initiation and by the insulator profile. It is shown that a strong relation between streamer propagation and breakdown exists, because the insulator profile exerts a similar influence on the breakdown and propagation fields. The effect of a shed on an insulating surface, forming an `obstruction' to streamer progress, is to increase the stability for propagation and breakdown fields, and to reduce the propagation velocity at all applied fields compared with those in the case of a smooth insulator. Along the surface of a smooth insulator, a streamer system propagates with a `surface' and an `air' component; however, a shed on an insulating surface modifies this system, resulting in only one component reaching the cathode  相似文献   

4.
Results concerning the propagation of streamers along insulating surfaces under uniform electric field are presented. The basic properties of streamers, namely the electric field required for a stable propagation and the propagation velocity, have been measured and compared with propagation in air alone as a reference. The results have shown that in the experimental arrangement used significant space charges due to streamer branching are absent, therefore the properties observed are considered as characteristic of a single streamer. Streamers propagate stably with an intrinsic propagation field and a characteristic velocity that depend on the nature of the insulating material. For electric fields higher than the minimum field required for a stable propagation, a streamer system propagates with a `surface' and an `air' component  相似文献   

5.
Streamer discharges in tap water and distilled water have been generated by applying a voltage pulse from 120 to 175 kV and 500 ns duration to a wire-to-electrode configuration. Electrical and optical diagnostics were used to explore the temporal development of the streamers in tap and distilled water, at various applied voltages and both polarities. With the wire serving as anode, multiple, parallel streamer discharges were generated. The number density of these streamers along the wire decreases with decreasing electric field on the surface of the wire. The dependence of the streamer density on electric field indicates the role of field enhancement at inhomogeneous microstructures along the wire as streamer initiation mechanism. The appearance of the discharge was different for tap and distilled water. However, the measured average streamer propagation velocity from the positive wire to the grounded plane electrode, of 32 mm//spl mu/s, was independent of the water conductivity and the applied voltage. This suggests the existence of a self-sustained electric field at the streamer head. With the wire serving as cathode, only a weak light emission from the area close to the wire was observed, and streamers did not appear for the same voltage amplitude as with the positive polarity. This suggests that an ionic current flowing in the water is not dominant in the streamer propagation process.  相似文献   

6.
This paper presents the results of fundamental investigations on the inception and propagation of corona discharge on an ice surface stressed with a standard lightning impulse voltage. High-speed photography and photomultiplier techniques were used to observe and record the propagation of the streamers. The effects of several experimental parameters such as freezing water conductivity and HV rod electrode radius on the streamer inception parameters were investigated. Moreover, time to first streamer, inception voltage and corresponding field, as well as streamer propagation velocity and charge deposited by a streamer on ice surface were measured. The results are discussed and emphases are laid on the main factors influencing the development of positive streamers on ice surface.  相似文献   

7.
By measuring the currents associated with the streamer discharge along silicone rubber surfaces, parameters of streamer propagation such as the minimum field of streamer crossing, the field of stable streamer propagation, the mean velocity and the streamer charge distribution have been analyzed and compared to the streamer discharge in air alone. Clear differences were observed in the measured currents for the individual surfaces at low background fields (285 kV/m). For higher fields the streamer crosses the gap almost independently of the surface type. The minimum streamer field was found to be slightly increased compared to air. The field of stable streamer propagation also was higher than in air. It is ~ 570 kV/m, larger than that of the streamer discharge in air (~ 500), under the same conditions. The streamer speed was found slightly increased in the presence of the silicone rubber surface and the distinction between the individual surfaces was modest. A discussion on possible mechanisms for the observed differences in the streamer speed and currents with and without the insulator surfaces is presented. The net positive charge of the streamer along an insulating surface seems to be distributed along the streamer channel rather than localized in the front part of the channel as the case for the streamer in air  相似文献   

8.
在现有泊松方程及电流连续性方程的放电模型基础上,通过引入载流子密度波动源建立具有多分支流注形貌的放电改进模型;通过COMSOL软件仿真分析了雷电冲击电压为120kV、160kV和200kV时的放电结果。结果表明:改进模型的流注分支形貌比原模型更接近试验结果;最大场强主要分布在流注头部,且均超过2×108 V/m,其中200kV时由二次流注引起的场强和电荷变化最为明显。此外,3种电压下的z轴流注发展长度和速度还表明流注分支间电荷的相互排斥对流注有抑制作用。而对比电压上升沿时间分别为5ns、10ns、50ns和120ns时的流注形貌还发现:电压上升沿时间越短,流注半径越大,分支越多。该文的研究成果有助于分析放电过程中载流子密度波动对流注分支的影响机理。  相似文献   

9.
The propagation features of a streamer discharge in water have been investigated. Based on the experimental data obtained in the study of water discharges in a nonuniform electric field, due propagation of streamers is explained as the evaporation of water at the tip of the streamer and around it. The energy balance in the process of the streamer propagation is calculated for a sub-microsecond discharge in distilled water. It is shown that the energy released in the pre-breakdown process is sufficient to evaporate the liquid in the streamer channels. Similar velocity of the streamer propagation in both tap and distilled water substantiates negligible effect of ionic current density onto the streamer propagation process. These estimations, based on experiment, have relevance to the discussion of the nature of the dielectric breakdown of water  相似文献   

10.
The properties of streamers traveling over the surface of oil-immersed solid dielectrics were experimentally studied under lightning impulse conditions. Streamer polarity and the position of a grounded side electrode significantly affected the relationship between the streamer extension length and the applied voltage. Solid surface charging also had a large effect on the streamer propagation. However, the streamer propagation properties showed a consistent dependence on the potential at the solid-liquid interfaces. In addition, the potential drop inside the streamer channel was measured as a function of normalized streamer length. The curve revealed that the potential drop increased drastically within the region of ~20% from the streamer tip. The streamer appeared to progress with a constant mean velocity  相似文献   

11.
电晕是输电线路设计和运行中面临的重要问题之一,通过实验测量和模拟计算,得到了不同气压湿度下的正直流电晕流注脉冲特性;流注放电存在的电压区间随着气压和湿度的升高而增大,实验测量和利用流体模型计算得到的流注脉冲幅值均随着气压降低、湿度升高而减小;利用流注通道中电子密度的变化对这一现象进行了分析。  相似文献   

12.
正直流电晕流注脉冲特性随气压湿度变化的研究   总被引:1,自引:0,他引:1  
电晕是输电线路设计和运行中面临的重要问题之一,通过实验测量和模拟计算,得到了不同气压湿度下的正直流电晕流注脉冲特性;流注放电存在的电压区间随着气压和湿度的升高而增大,实验测量和利用流体模型计算得到的流注脉冲幅值均随着气压降低、湿度升高而减小;利用流注通道中电子密度的变化对这一现象进行了分析。  相似文献   

13.
This paper presents experimental data and calculations concerning the electrical properties of positive streamers in mineral oil at large gaps and HV. The experiments concern the measurement of charge, electric field, and the determination of the potential drop along streamers, either in the liquid alone, or for streamers guided within insulating tubes. Calculations of charge and field distribution around streamers are carried out by charge simulation. To do this, streamers are represented by objects with simple shapes (spheres or cylinders) equivalent to their macroscopic aspect. These models lead to a correct agreement with measured streamer charge and field on the plane electrode. Qualitative correlations are established between calculated field distributions and streamer behavior such as velocity, transitions between propagation modes. It is also concluded that the potential drop in streamers and branching both act as regulating mechanisms that help to keep the streamer tip field, and hence the velocity, constant over a wide voltage range  相似文献   

14.
The potential distribution of a developing positive surface streamer was measured by the Pockels effect. The transient potential distribution along a linear path was measured at minimum resolutions of 20 µm and 2 ns. Additionally, velocity of a streamer, average electric field along a streamer, and the developing length were measured while changing the insulator thickness from 0.8 to 5.0 mm. The potential along a positive surface streamer decreases linearly with the distance from the high‐potential electrode, and its gradient is about 500–650 V/mm, which is independent of the inception voltage and the insulator thickness. © 2006 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

15.
Experimental results on the propagation of positive streamers along contoured, axially symmetric, polytetrafluoroethylene (PTFE) insulation surfaces are presented. A plane parallel electrode configuration provides a substantially uniform electric field for streamer propagation and a point electrode at the ground plane initiates the avalanche process. Basic streamer properties of velocity and propagation probability with field strength are measured and compared with the corresponding characteristics of air and cylindrical insulators. Several insulator profiles are investigated and the occurrence of multiple streamer paths is demonstrated, which are generally distinguishable as surface and air components with different propagation velocities. Comparative data of the breakdown fields for the various insulators is included  相似文献   

16.
低气压下流注放电特性的研究   总被引:1,自引:0,他引:1  
流注的产生和传播是空气间隙击穿中一个重要的物理过程,研究低气压下流注的产生和传播过程有助于理解空气间隙的击穿放电,对高海拔地区输电线路及输变电设备的设计和运行有着重要的意义。在可调节气压湿度的有机玻璃罐中,利用“三电极”结构,应用光电倍增管测量了不同气压湿度下,流注传播概率和平均传播速度随平板间电场强度的变化。通过数据拟合得到了流注稳态传播电场和相对空气密度以及湿度之间的经验公式。建立流体模型,对流注传播的动力学特性进行了仿真计算,得到的流注稳态传播电场及平均传播速度和实验测量得到的结果吻合得很好。结果表明:流注的传播场强随湿度、气压的增大而增大;在相同的电场强度下,流注平均传播速度随湿度、气压的增大而减小。利用仿真计算模型计算得到流注传播过程中的各个参数,分析了流注传播动力学特性随气压湿度变化的机制。  相似文献   

17.
The charge density produced by streamers on an insulator surface in SF6 has been investigated by using a probe method with a high-speed temporal resolution. Concentric circular probes, which also act as a plane electrode, are used in this probe method. Probe signals are observed oscilloscopically and converted into the charge densities through a numerical calculation. This method reveals the charge distribution before a disturbance caused by the “back discharge.” The charge density thus obtained ranges from several nC/cm2 up to about 60 nC/cm2. The density depends on the pressure, voltage height and the position of the streamer. The electric field on the insulator is analyzed numerically taking into account the surface charge. The internal electric field of the streamer is found to be 40 ~ 50 kV/cm · atm when the streamer ceases its propagation. However, it partly exceeds the critical one (89 kV/cm · atm) during the propagation.  相似文献   

18.
Prebreakdown phenomena in n-hexane are observed in detail for positive and negative polarities by using simultaneously a high speed schlieren technique and an LED current measuring system, when an impulse voltage (1.1/225 μs) is applied to a point-to-plane electrode gap. Furthermore, the effects of several additives on the streamer propagation are investigated. Especially the effects of electron-trapping additives on negative streamer propagation and of low ionization potential additives on the positive streamer propagation, are examined, as is a correlation between the shape and the propagation velocity of the streamers  相似文献   

19.
水中流注放电的特性及流注发展机理研究对于污水处理、杀菌消毒、水下声源和高压绝缘具有重要的意义。基于分形理论,构建了考虑气泡生长过程的水中流注放电仿真模型,并仿真研究了不同电压幅值和溶液电导率下的放电特性。结果表明,随着外施电压和溶液电导率的增大,通道电荷量和流注发展速度均增大,而放电预击穿延时减小。计算得到的流注发展速度、预击穿延迟时间随水溶液电导率的变化等与已报道的实验相符。  相似文献   

20.
This work is devoted to the modeling of branching streamers propagating in transformer oil using an equivalent electrical network and the electrical network computation. The proposed model enables one to determine the different characteristics of the streamer (i.e., the associated current and the electrical charge, the power and the energy injected in the liquid, the local electric field at the streamer head, the streamer shape and its velocity, the mobility of the charge carriers within the streamer channels, the local viscosity and temperature). It's shown through the simulated values of the mobility of charge carriers, the local viscosity and temperature that both electronic and gaseous mechanisms are implicated in the streamer development. The gaseous nature of streamers and the role of the local electric field are evident. The influence of the conductivity and additives as well as the electrode gap on the propagation velocity of positive streamers is analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号