首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Experimental nozzle spray analysis of different nozzle sizes was performed to investigate the effect of the spray profile on combustion quality. Detailed numerical investigation analysis investigated the effect of discrete phase model (DPM) on liquid fuel atomization and combustion characteristics. Four injectors of 2.98, 5.95, 8.93, and 11.90 kg/h nominal capacities numbered from 1 to 4 were tested on new micro gas turbine (MGT) chamber designed especially for liquid biofuels. The fuel was tested in the range of 2.36 to 9.43 kg/h achieving stable turbine operation in the pressure range of 0.1 to 1 bar. Stable operation was achieved for injector number 2 in the range of 0.1 to 0.5 bar compared with 0.2 to 0.6 bar for injector number 3 and 0.5 to 1 bar for injector number 4, while the smallest injector number 1 was not operational above 0.1 bar. The experimental results produced favourable low CO emissions of 95 ppm, NOx emission of 31 ppm, and average turbine inlet temperature (TIT) of 1316 K at maximum pressure. The numerical simulation with DPM using similar injector and operating conditions showed good agreement with the experimental results averaging CO emissions of 99 ppm and NOx of 13 ppm at TIT of 1329 K.  相似文献   

2.
Spray structure and atomization characteristics were investigated through a comparison of a porous and a shear coaxial injector. The porous injector shows better atomization performance than the shear coaxial injector. To in- crease atomization performance and mixing efficiency of two-phase jets, a coaxial porous injector which can be applicable to liquid rocket combustors was designed and tested. The characteristics of atomization and spray from a porous and a shear coaxial injector were characterized by the momentum flux ratio. The breakup mechanism of the porous injector is governed by Taylor-Culick flow and axial shear forces. Momentum of injected gas flow through a porous material which is composed of sintered metal is radically transferred to the center of the liquid column, and then liquid column is effectively broken up. Although the shapes of spray from porous and shear co- axial jets were similar for various momentum ratio, spray structures such as spray angle and droplet sizes were different. As increasing the momentum flux ratio, SMD from the porous injector showed smaller value than the shear coaxial injector  相似文献   

3.
In three-dimensional arbitrary curvilinear coordinates, an Eulerian–Lagrangian formulation is applied to large-eddy simulation (LES) of instantaneous gas–liquid two-phase turbulent combustion flows in gas turbine combustors. Three dimensional block-structured grids are generated by zone method and solving a system of elliptic partial differential equations. The k-equation sub-grid scale model is used to simulate the sub-grid eddy viscosity and the EBU combustion sub-grid scale model is employed to predict the chemical reaction rate. The gas-phase governing equations are solved with SIMPLE algorithm and hybrid scheme in non-staggered grid system. A stochastic separated flow formulation is used to track the droplet trajectories velocities, size and temperature history by Lagrangian equations of motion and thermal balance. Multi-zone coupling method is employed to transport data between interfaces. The influences of two different primary hole positions and three different fuel–air ratios on turbulent two-phase reacting flows are calculated. Predictions are in reasonable agreement with the measured velocity using PIV system and temperature, species concentration measurements at the exit. It is shown that the present approach may be used to study spray combustion flow fields for guiding the design of advanced gas turbine combustors.  相似文献   

4.
The sprayed feed droplet behavior, including coalescence and vaporization into gas–solid flow, is complex especially near the atomizer region in fluid catalytic cracking (FCC) riser reactor. A three dimensional CFD model of the riser reactor has been developed, which takes into the account three phase hydrodynamics, heat transfer and evaporation of the liquid droplets into a gas–solid flow as well as phase interactions. A hybrid Eulerian–Lagrangian approach was applied to numerically simulate the collision and vaporization of gas oil droplets in the gas–solid fluidized bed. This numerical simulation accounts the possibility of coalescence of feed spray droplets in computing the trajectories and its impact on droplet penetration in the reactor. The modeling result shows that droplet coalescence mainly occurs at the initial part of the atomizing region and where three phase flow hits the reactor wall and bounces back. The model has the ability of inspecting the effects of feed injector geometry on the overall reactor hydrodynamic and heat transfer. The CFD simulation results showed that the evaporated droplet gas caused higher local velocities of the gas and solid particles and gas–solid flow temperature reduction.  相似文献   

5.
对柴油机用轴针式喷油器实现直喷燃烧的分析   总被引:1,自引:0,他引:1  
从研究Elsbett“双热区”隔热直喷燃烧系统(DuothermicCombustionSystem)出发,分析了喷雾贯穿。喷孔直径、喷油器安装位置、铰接式铸铁活塞、采用机油冷却及增压等对混合气形成及燃烧过程的影响。认为,适当增加进气涡流强度、缩小喷孔与轴针之间的配合公差、采用铸铁活塞头部、以机油作为冷却介质、实现高温冷却等措施,有利于改善小缸径柴油机混合气形成及燃烧过程。“双热区”燃烧系统对采用轴针式喷嘴实现小缸径柴油机的直喷燃烧有许多值得借鉴之处。  相似文献   

6.
喷油压力波动对喷嘴内空穴发展影响的CFD分析   总被引:1,自引:0,他引:1  
柴油机喷嘴内部空穴流动是造成喷孔出口燃油初次雾化的重要原因之一,影响喷雾特性,进而影响柴油机的燃烧及排放性能.而实际柴油机喷油系统中的喷油压力往往存在波动,使得喷嘴内部空穴流动现象更为复杂.针对垂直多孔喷嘴,利用混合多相流空穴模型,进行了喷嘴内部气液两相瞬态流动的三维数值模拟,深入分析了不同频率及不同波形的入口压力波动对喷嘴内部流动空穴发展过程的影响.分析得出,空穴有其自己的时间和长度尺度.  相似文献   

7.
张煜盛 《内燃机学报》1994,12(2):95-101
本文通过高速摄影及激光全息摄影研究了轴针式喷油嘴的喷雾发展,指出了在其发展初期可能出现的喷雾轴线偏转等一些不同于孔式喷油嘴喷雾的流动特点。在此实验研究的基础上,根据紊流射流积分方法建立了轴针式喷油嘴喷雾初期发展的数学模型。应用该模型对一普通形喷油嘴及柴油机用ZS45S2轴针式喷油嘴喷雾的发展进行了算例分析,计算值与实测值吻合较好。  相似文献   

8.
湿法烟气脱硫喷淋塔的实验与反应模型研究   总被引:3,自引:0,他引:3       下载免费PDF全文
建立了石灰石/石膏湿法烟气脱硫喷淋塔实验台,实验研究了重要的操作参数对喷淋塔脱硫效率的影响规律。实验结果表明,提高液气比和浆液pH值、降低烟气温度和烟气速度、降低入口烟气的SO2浓度以及强制氧化均可以提高脱硫效率。将喷淋浆液分成喷淋液滴和塔壁液膜两种存在形式,并分别建模,喷淋液滴的脱硫过程采用Gerbec液滴脱硫模型计算,将塔壁液膜的流动分为层流和波动层流两种状态,发展出了新的喷淋塔脱硫反应模型。模型计算结果表明,相对于Gerbec液滴模型,本文的模型计算结果与实验数据吻合得更好。  相似文献   

9.
为了研究电控汽油喷油器内部瞬态流动情况,建立了喷油器的几何模型和数学模型.采用FLUENT软件中的动网格技术和自编程序控制模型的边界条件,计算了球阀的受力情况和速度,从而模拟了喷油器球阀的运动过程.该建模方法使每一步的数值模拟计算都依赖于前一步的计算结果,从而保证了数值模拟的连续性.通过每一步的迭代,得到每一时刻喷油器内部流体的压力、速度、流量.结果表明:该喷油器瞬态流动的建模方法是行之有效的,其数值模拟结果和实验结果相吻合.该方法也揭示了喷油器喷孔拐角处空化现象的产生、发展和消失过程,并可给出喷孔出口处速度分布情况.  相似文献   

10.
Gas entrainment induced by a spray jet can be significantly affected by the spray evaporation rate. In this study, we have directly measured the air entrainment induced by a liquid nitrogen spray jet into an unbounded and stagnant room air. It is realized that the air entrainment is proportional to the axial gradient of oxygen mass flow in a pure nitrogen spray jet. Hence, the air entrainment can be determined by a combined measurement of local cross-sectional distributions of oxygen concentration, gas temperature and gas velocity along the jet path. These measurements are directly obtained using an in situ oxygen concentration analyzer, a thermocouple system, and a Laser Doppler Velocimeter. In order to evaluate the effect of evaporation rate, direct measurements and numerical simulations of the air entrainment by a cold gaseous jet of nitrogen (at a temperature slightly above that of liquid nitrogen) into room air are also performed. Measurements of the entrainment rate and flow similarity of the gaseous jets without droplets compared very well against those from the single-phase jet theories and numerical simulation, which validates our experimental approach and analysis method. Our experimental results indicate rough flow similarities exist in evaporating spray jets with round nozzles. Although the air entrainment by the liquid nitrogen spray is found significantly increased, as compared to that by the cold gaseous jet of nitrogen from the same nozzle and at the same jetting velocity, the increased ratio is far less than the equivalent momentum ratio of the liquid nitrogen spray to the gas nitrogen jet. This experimental finding suggests that the evaporation of spray markedly weakens the gas entrainment. In this study, a parametric model is also developed to provide a theoretical basis of the data analysis for the cross-section averaged spray evaporation rate within the spray jet region.  相似文献   

11.
采用欧拉双流体模型及颗粒动理学理论,对洁净煤发电器内的气固两相流动进行三维数值模拟.结果表明.在该喷射器的收缩段的下壁面有一明显的固体颗粒聚集区,这与实验观察到的现象基本一致;气体在喷射器中心形成一个高速射流区域,由于高速气流的卷吸作用,高速射流区的两侧有明显的回流现象;固体颗粒速度最大的地方离气体入口有一段距离.为了进一步验证模型.气固喷射器内静压分布的数值结果与实验进行了比较,结果表明:基于欧拉双流体模型的三维数值模拟结果和试验结果吻合得较好,平均误差较小,这说明该模拟方法是成功的.可为进一步研究与节能减排相关装置的气固喷射器的复杂气固流动特性提供参考.  相似文献   

12.
运行参数对喷雾干燥烟气脱硫效率影响的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
以计算流体力学为基础,结合浆滴脱硫的双膜模型,以Euler/Lagrange方法建立了喷雾干燥烟气脱硫的数值计算模型及程序,在较广的参数变化范围内,模拟结果与Hill和Zank的试验数据符合较好;同时对影响脱硫效率的运行参数如雾化浆滴粒径、出口饱和温距、入口SO2浓度和钙硫摩尔比进行了模拟。相对于常用的一维平推流模型,能够方便地跟踪单个浆滴的运动轨迹及脱硫和蒸发经历,直观的显示出整个反应器内的流场、温度场及组分的空间分布。  相似文献   

13.
准一维超音速气液两相流数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
采用欧拉-拉格朗日方法对燃气-蒸汽发射动力装置内超音速燃气中的喷雾蒸发的气液两相流进行了准一维数值模拟研究,该方法考虑了面积变化、质量添加、蒸发效应、变物性等各种影响因素。针对不同的喷水孔径、喷水压差以及水气质量比进行了数值模拟计算,分析了各种条件下的液滴蒸发情况以及对气相流场的影响,为燃气-蒸汽发射动力装置的设计优化提供了一种快速有效的方法。  相似文献   

14.
This paper describes existing numerical techniques used for simulating heat pipe operation, and the development of a simplified numerical model for normal wicked/wickless heat pipes based on the analysis of current modelling methods. Vapour flow was treated as a two‐dimensional flow. Heat transfers through the liquid–wick region and wall region were computed by solving a one‐dimensional heat conduction equation. Flow in the liquid–wick region was treated as a one‐dimensional problem. The liquid and vapour flows were coupled using a set of governing equations, incorporating thermal compressibility, hydro‐dynamical and capillary relationship, as well as geometrical correlation. The finite‐difference method was employed to carry out the numerical analysis, and FORTRAN language was used to develop a computer program. The model was used to investigate the operating characteristics of a long ‘wicked’ heat pipe, including variation of cross‐sectional area, axial/radial velocity, pressure and temperature of liquid/vapour flows with height position above the liquid level. To validate the modelling predictions, a test rig was constructed to carry out experimental testing. This included measurement of surface temperatures and heat flow associated with heat‐pipe heat transfer. The results from tests were found to be in general agreement with the numerical predictions when the test conditions were close to the simulation assumptions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
采用MIXTURE双相流数值模拟的方法研究压力涡流喷嘴结构因素对形成中空锥喷雾的影响。喷孔直径由0.5mm增大到1mm时,喷雾贯穿距离减少约60%,空心锥角增大7.5倍;喷孔长度由0.6mm增大到1mm时,喷雾贯穿距离增大约1.4倍,空心锥角减少约40%;有轴针时,空心锥角增加约4倍;改变轴针形状,将轴针头部加工成锥形,空心锥角增加约30%。喷孔内、外有无圆角对喷雾空心锥角大小的影响幅度在30%-40%。研究结果表明:喷孔长径比、喷孔入口处喷孔形状与轴针形状的配合和喷孔出口端形状是影响压力涡流喷嘴空心锥特性的重要因素。  相似文献   

16.
Water removal from the gas diffusion layer (GDL) is crucial for the efficient operation of proton exchange membrane (PEM) fuel cell. Static pressure gradient caused by the fast reactant flow in the flow channel is one of the main mechanisms of water removal from GDL. Reactant can leak or cross directly to the neighboring channel via the porous GDL in the cells with serpentine flow channel and many of its modifications. Such cross flow plays an important role for the removal of liquid water accumulated in the GDL especially under land area. To investigate the characteristics of liquid water behavior in the GDL under pressure gradient, the fibrous porous structure of the carbon paper is modeled by three dimensional impermeable cylinders randomly distributed in the in-plane directions and unsteady two-phase simulations are conducted. It is shown that the permeability from the numerical model matches well the experimental measurements of the common GDLs in the literature. The contact angle and pressure gradient are the key parameters that determine the initiation and the process of liquid water transport in the GDL which is initially wet with stagnant liquid water. It has been observed that the larger contact angle results in faster water removal from the GDL. Numerical simulations are performed for a wide range of pressure gradient with different contact angles to determine the minimum pressure gradient that initiates the liquid water transport in the GDL. It is found that the amount of pressure gradient caused by the cross flow is sufficient and effective to get rid of the liquid water accumulated in the GDL. The simulation results are also compared with experimental data in literature showing a good agreement. The characteristics of liquid water discharging from the gas diffusion layer are also described.  相似文献   

17.
Dynamics and stability of lean-premixed swirl-stabilized combustion   总被引:13,自引:0,他引:13  
Combustion instability remains a critical issue limiting the development of low-emission, lean-premixed (LPM) gas turbine combustion systems. The present work provides a comprehensive review of the advances made over the past two decades in this area. Recent developments in industrial dry-low-emission (DLE) swirl-stabilized combustors are first summarized. Various swirl injector configurations and related flow characteristics, including vortex breakdown, precessing vortex core, large-scale coherent structures, and liquid fuel atomization and spray formation, are discussed. Nonlinear behaviors of combustion processes observed in combustors are described. The influence of fuel preparation, combustor geometry, and operating conditions on combustion characteristics in swirl-stabilized combustors is examined. The mechanisms driving combustion instabilities, including hydrodynamic instabilities, equivalence ratio fluctuations, flame surface variations, and oscillatory liquid fuel atomization and evaporation are investigated. Instability stabilization methods, including both passive and active control techniques, are also reviewed. Finally, recent progress in both analytical modeling and numerical simulation of swirl-stabilized combustion are surveyed.  相似文献   

18.
通过对多流体碱雾发生器中伴随气固两相流的蒸发喷雾射流的数值模拟,得到了碱雾发生器内气液固三相的速度矢量场.计算结果表明,气体轴向速度呈中间高两头低的对称分布;对于不同粒径的液滴,呈现出不同的空间分布规律,大液滴由于惯性大,可以穿越周围的气流区,比小液滴有更大的扩展角;在喷嘴出口2倍管道直径区域,由于雾化液滴与固体颗粒存在较大的速度差,有利于固体颗粒的碰撞增湿.  相似文献   

19.
S. Som 《Combustion and Flame》2010,157(6):1179-1386
Injector flow dynamics and primary breakup processes are known to play a pivotal role in determining combustion and emissions in diesel engines. In the present study, we examine the effects of primary breakup modeling on the spray and combustion characteristics under diesel engine conditions. The commonly used KH model, which considers the aerodynamically induced breakup based on the Kelvin-Helmholtz instability, is modified to include the effects of cavitation and turbulence generated inside the injector. The KH model and the new (KH-ACT) model are extensively evaluated by performing 3-D time-dependent simulations with detailed chemistry under diesel engine conditions. Results indicate that the inclusion of cavitation and turbulence enhances primary breakup, leading to smaller droplet sizes, decrease in liquid penetration, and increase in the radial dispersion of spray. Predictions are compared with measurements for non-evaporating and evaporating sprays, as well as with flame measurements. While both the models are able to reproduce the experimentally observed global spray and combustion characteristics, predictions using the KH-ACT model exhibit closer agreement with measurements in terms of liquid penetration, cone angle, spray axial velocity, and liquid mass distribution for non-evaporating sprays. Similarly, the KH-ACT model leads to better agreement with respect to the liquid length and vapor penetration distance for evaporating sprays, and with respect to the flame lift-off location for combusting sprays. The improved agreement is attributed to the ability of the new model to account for the effects of turbulence and cavitation generated inside the injector, which enhance the primary breakup. Results further indicate that the combustion under diesel engine conditions is characterized by a double-flame structure with a rich premixed reaction zone near the flame stabilization region and a non-premixed reaction zone further downstream. This flame structure is consistent with the Dec’s model for diesel engine combustion (Dec, 1997) [1], and well captured by a newly developed flame index based on the scalar product of CO and O2 mass fraction gradients.  相似文献   

20.
喷淋脱硫塔喷嘴外流动数值模拟与实验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
建立了一个喷淋脱硫塔喷嘴数值模型,研究了影响喷淋脱硫塔内气液传质的喷淋液流量与液膜平均破裂长度、喷嘴初始喷射角、液滴平均粒径的关系。设计了专门的测试平台和单匝螺旋喷嘴,采用快速CCD和数码照相机拍照对液膜和液滴运动进行了测试和分析。模型计算和实验结果均表明:液膜平均破裂长度随喷淋液流量加大而减小;液滴平均粒径减小随喷淋液流量加大而减小;在喷嘴出口缝隙高度等于4.25 mm时,随流量的增大,喷嘴的喷射角随流量的增大反而变小,大于4.25 mm后,在同一喷嘴缝隙高度下,喷射角随喷嘴流量的增加而增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号