首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Trimethylsilyl-substituted polysilazanes were designed and successfully synthesized. They were used to fabricate high-purity stoichiometric Si3N4 ceramics through pyrolysis process. Trimethylsilyl groups improved the stability of polysilazanes and easily escaped during pyrolysis, which effectively reduced oxygen and carbon content in the final polymer-derived Si3N4. The C content of Si3N4 ceramic was below 0.06 wt%, and the O content was below 1.2 wt%. The Si3N4 ceramics remained amorphous up to 1400°C, yet they were completely transformed into α-Si3N4 at 1500°C. Synergistic effect from low oxygen and carbon content contributed to highly stable amorphous state of Si3N4 till high temperatures. This amorphous Si3N4 ceramics could be used in cutting-edge technology where high purity is compulsory.  相似文献   

2.
Fused silica (SiO2) ceramic crucibles with α-Si3N4 coating are commonly used for smelting photovoltaic silicon (Si). However, SiO2 ceramics will inevitably undergo crystallization and large volume change during the high-temperature service, which will lead to crucible cracking and deteriorate the quality and yield of the Si ingot. In this work, α-Si3N4/SiO2 ceramics are fabricated by introducing α-Si3N4 into SiO2 ceramics to inhibit crystallization. The results show that the introduction of α-Si3N4 can effectively inhibit crystallization of SiO2 ceramics at temperature higher than 1450 °C. Only 5 wt% cristobalite form in SiO2 ceramic with 20 wt% α-Si3N4 (heated at 1550 °C for 30min). The crystallization activation energy of SiO2 ceramic containing 20 wt% α-Si3N4 increases by 2.27 times to 931.2kJ/mol compared with that of pure SiO2 ceramic (409.6kJ/mol). The inhibition crystallization effect and increased activation energy derive from the in-situ formation of O–Si–N chemical bond and physical isolation of SiO2 particles by α-Si3N4 powders.  相似文献   

3.
ZrN/Si3N4 nanocomposites have been prepared by chemically crosslinking two polysilazanes with a zirconium-based compound and subsequent heat-treatment at temperatures ranging from 1000 to 1600 °C. The polymer synthesis has been systematically investigated using FT-IR, solid-state NMR, and elemental analyses. Then, the pyrolysis under ammonia at 1000 °C trigering the thermo-chemical polymer-to-ceramic conversion was examined, leading to X-ray amorphous ceramics with yields governed by the chemistry of the neat polysilazane. Investigations of the structural evolution of the single-phase amorphous ceramic network above 1000 °C by X-ray diffraction and Raman spectroscopy pointed out that the ZrN phase already segregated at 1400 °C and formed highly crystalline ZrN/Si3N4 nanocomposites at 1600 °C. HRTEM investigations validated the unique nanostructural feature of the nanocomposites made of ZrN nanocrystals distributed in α- and β-Si3N4 phases. Our preliminary investigations of the optical properties showed that these structural changes allowed tuning the optical properties of ZrN/Si3N4 nanocomposites.  相似文献   

4.
Two types of Si3N4 fibers with different oxygen contents were annealed in a nitrogen atmosphere at 1500 °C for 1 h. After annealing, the fiber (SN-L) containing 0.5 wt% oxygen crystallized to α-Si3N4 but lost its strength, whereas the fiber (SN-H) containing 4.2 wt% oxygen was amorphous and retained 63.6% of its strength. The phase transition in these fibers was mainly influenced by the oxygen level. The lower oxygen content in the SN-L favored the precipitation of an almost stoichiometric composition of α-Si3N4 initially at ~1450 °C with an activation energy (Ea) of 663.357 kJ/mol. Nanopores existing naturally in the fiber promoted crystallization via heterogeneous nucleation. SN-H precipitated as an amorphous SiNxOy metaphase preferentially at ~1400 °C with an Ea of 440.434 kJ/mol, owing to the higher oxygen content approaching that of Si2N2O. SiNxOy inhibited the crystallization of α-Si3N4, making SN-H more thermally stable than SN-L at temperatures above 1500 °C.  相似文献   

5.
The high temperature crystallization behavior of polytitanosilazane-derived amorphous SiTiN ceramics was investigated in a nitrogen atmosphere using XRD, Raman spectroscopy, TEM, SEM and BET. At 1400 °C, TiN is the first phase to nucleate in SiTiN ceramics forming nanocomposites with a homogeneous distribution of TiN nanocrystals within an amorphous Si3N4 matrix. Above 1400 °C, XRD indicates that the temperature at which Si3N4 crystallizes depends on the volume fraction of TiN present in nanocomposites. This is closely related to the chemistry of the polyorganosilazanes used to synthesize polytitanosilazanes. The use of perhydridopolysilazane, the most reactive polyorganosilazane, allows preparing TiN/Si3N4 nanocomposites with a remarkable stability of the amorphous matrix up to 1800 °C as mesoporous materials and powders. Dense monoliths crystallize earlier than the powder analogs because of the use of an ammonia pre-treatment before polymer warm-pressing.  相似文献   

6.
The brittleness of Si3N4 ceramics has always limited its wide application. In this paper, Si3N4 ceramics were prepared based on foam. Combining the unique honeycomb structure of the ceramic foams and the self-toughening mechanism of Si3N4, the strengthening and toughening of Si3N4 ceramics can be further achieved by adjusting the microstructure of Si3N4 ceramic foams. The powder particles are self-assembled by particle-stabilized foaming to form a foam body with a honeycomb structure. It was pretreated at different temperatures (1450–1750°C). The microstructure evolution of foamed ceramics at different pretreatment temperatures and the conversion rate of α-Si3N4 to β-Si3N4 at different pretreatment temperatures were explored. Then the foamed ceramics with different microstructures are hot-press sintered to prepare Si3N4 dense ceramics. The effects of different microstructures of foamed ceramics on the strength and toughness of Si3N4 ceramics were analyzed. The experimental results show that the relative density of Si3N4 ceramics prepared at a particle pretreatment temperature of 1500°C is 97.8%, and its flexural strength and fracture toughness are relatively the highest, which are 1089 ± 60 MPa and 12.9 ± 1.3 MPa m1/2, respectively. Compared with the traditional powder hot-pressing sintering, the improvement is 21% and 33%, respectively. It is shown that this method of preparing Si3N4 ceramics based on foam has the potential to strengthen and toughen Si3N4 ceramics.  相似文献   

7.
《Ceramics International》2017,43(10):7469-7476
The high-temperature durability of SiBNC ceramics is significantly influenced by Si/B ratios and the synthetic procedures. Single-source synthetic routes can yield homogeneous ceramics at the atomic level, but the Si/B ratio cannot be efficiently adjusted. In this paper, a simple and efficient method for the synthesis of SiBNC precursor polyborosilazanes (PBSZs) with different Si/B ratios has been established via a one-pot reaction involving boron trichloride, dichloromethylsilane and hexamethyldisilazane in different molar ratios. The Si/B ratios of the derived SiBNC ceramics were consistent with that of the precursor PBSZs. When pyrolysed at 1000 °C, PBSZs with 0.52, 0.94 and 2.12 Si/B ratios transformed into SiB2.6N5C2.2, SiB0.9N2.7C1.3 and Si2BN3C1.4 ceramics respectively. The polymer-to-ceramic process was also studied and featured ceramic yields of 43.2 wt%, 50.1 wt% and 62.2 wt%, respectively. The derived ceramic SiB0.9N2.7C1.3 resisted crystallization up until 1700 °C, whereas the SiB2.6N5C2.2 and Si2BN3C1.4 could remain amorphous up to 1600 °C only. Using the precursor with 0.94 Si/B ratio, the SiBNC ceramic fibres were also obtained.  相似文献   

8.
《Ceramics International》2022,48(20):30376-30383
In this study, α/β-Si3N4 composite ceramics with high hardness and toughness were fabricated by adopting two different novel ternary additives, ZrN–AlN–Al2O3/Y2O3, and spark plasma sintering at 1550 °C under 40 MPa. The phase composition, microstructure, grain distribution, crack propagation process and mechanical properties of sintered bulk were investigated. Results demonstrated that the sintered α/β-Si3N4 composite ceramics with ZrN–AlN–Al2O3 contained the most α phase, which resulted in a maximum Vickers hardness of 18.41 ± 0.31 GPa. In the α/β-Si3N4 composite ceramics with ZrN–AlN–Y2O3 additives, Zr3AlN MAX-phase and ZrO phase were found and their formation mechanisms were explained. The fracture appearance presented coarser elongated β-Si3N4 grains and denser microstructure when 20 wt% TiC particles were mixed into Si3N4 matrix, meanwhile, exhibited maximum mean grain diameter of 0.98 ± 0.24 μm. As a result, the compact α/β-Si3N4 composite ceramics containing ZrN–AlN–Y2O3 additives and TiC particles displayed the optimal bending strength and fracture toughness of 822.63 ± 28.75 MPa and 8.53 ± 0.21 MPa?m1/2, respectively. Moreover, the synergistic toughening of rod-like β-Si3N4 grains and TiC reinforced particles revealed the beneficial effect on the enhanced fracture toughness of Si3N4 ceramic matrix.  相似文献   

9.
β-Si3N4 rodlike seed crystallites were successfully produced by single-step heat treatment of commercial α-Si3N4 powder at 1900°C for 20 h under an N2 gas pressure of 980 kPa. The average diameter, length, and aspect ratio of the seed crystallites were 0.73 μm, 1.37 μm, and 1.86, respectively. The α- ⇀ β-Si3N4 phase transformation proceeded mainly at 1900°C, and this temperature was lower than the theoretical α-Si3N4 dissociation temperature (1933°C) under N2 gas pressure of 980 kPa. The formation of metastable solid solution due to the dissolution of O impurity into the α-Si3N4 crystal lattice was suggested as the driving force for the present oxide additive-free α- ⇀ β-Si3N4 phase transformation. β-Si3N4 ceramics were fabricated by liquid phase sintering promoted by an additive system of 1 wt% MgO with 3 wt% Gd2O3. Starting α-Si3N4 powder with 10 vol% rodlike β-Si3N4 seed crystallites prepared in this study and an extended sintering time for up to 20 h at 1950°C resulted in the formation of bimodal microstructure composed of fine matrix grains and large elongated grains originated from the seed crystallites. The β-Si3N4 ceramics exhibited improved fracture toughness and thermal conductivity of 5.9 ± 0.8 MPa m−1/2 and 109.3 ± 0.4 W m−1 K−1, respectively, retaining a high fracture strength of about 1 GPa.  相似文献   

10.
In situ synthesis of Si2N2O/Si3N4 composite ceramics was conducted via thermolysis of novel polysilyloxycarbodiimide ([SiOSi(NCN)3]n) precursors between 1000 and 1500 °C in nitrogen atmosphere. The relative structures of Si2N2O/Si3N4 composite ceramics were explained by the structural evolution observed by electron energy-loss spectroscopy but also by Fourier transform infrared and 29Si-NMR spectrometry. An amorphous single-phase Si2N2O ceramic with porous structure with pore size of 10–20 μm in diameter was obtained via a pyrolyzed process at 1000 °C. After heat-treatment at 1400 °C, a composite ceramic was obtained composed of 53.2 wt.% Si2N2O and 46.8 wt.% Si3N4 phases. The amount of Si2N2O phase in the composite ceramic decreased further after heat-treatment at 1500 °C and a crystalline product containing 12.8 wt.% Si2N2O and 87.2 wt.% Si3N4 phases was obtained. In addition, it is interesting that residual carbon in the ceramic composite nearly disappeared and no SiC phase was observed in the final Si2N2O/Si3N4 composite.  相似文献   

11.
A dense α-Si3N4-based ceramic protective coating was successfully prepared on porous Si3N4 ceramics by a liquid infiltration and filling method. The coating composed of a primary α-Si3N4 phase and secondary O'-Sialon, β-Sialon, and Y–Si–Al–O–N glass phase. After thermal shock at ΔT = 1000°C for five times, cracks were produced, but the tip of crack stopped inside the coating; so the coated porous Si3N4 ceramics still had a good waterproof ability and its water absorption was only 7%. During thermal shock, toughening mechanisms involving needle-like O'-Sialon particle bridging, crack deflection, and rough fracture, occurred within the cracks, contributing to thermal shock resistance of the coating. The dielectric constant of the coated porous Si3N4 ceramics showed a slow increase trend with increasing temperature, and it reached the maximum value of 3.57 at 1100°C at the frequency of 11 GHz. The dielectric loss increased slowly as the temperature increased from room temperature to 900°C, but it started to increase evidently when the temperature was over 900°C.  相似文献   

12.
《Ceramics International》2020,46(17):27175-27183
The fabrication of silicon nitride (Si3N4) ceramics with a high thermal conductivity was investigated by pressureless sintering at 1800 °C for 4 h in a nitrogen atmosphere with MgO and Y2O3 as sintering additives. The phase compositions, relative densities, microstructures, and thermal conductivities of the obtained Si3N4 ceramics were investigated systemically. It was found that at the optimal MgO/Y2O3 ratio of 3/6, the relative density and thermal conductivity of the obtained Si3N4 ceramic doped with 9 wt% sintering aids reached 98.2% and 71.51 W/(m·K), respectively. EDS element mapping showed the distributions of yttrium, magnesium and oxygen elements. The Si3N4 ceramics containing rod-like grains and grain boundaries were fabricated by focused ion beam technique. TEM observations revealed that magnesium existed as an amorphous phase and that yttrium produced a new secondary phase.  相似文献   

13.
Mesoporous SiVN(O) ceramics were prepared from a mixture consisting of VO(acac)2-modified perhydropolysilazane and polystyrene. The resulting amorphous single-phase SiVN(O) ceramics remained amorphous in nitrogen atmosphere up to 1400 °C. The as-prepared materials consist of nanoscaled vanadium nitride dispersed in amorphous Si3N4; exposure to 1600 °C leads to the crystallization of VN and Si3N4. The specific surface area (SSA) and the pore size of the SiVN(O)-based ceramics can be easily controlled by the temperature of thermal treatment and by the amount of polystyrene. The average pore size of the prepared SiVN(O) ceramics was 4–10 nm and their largest SSA values, 642 and 506 m2/g, were achieved upon ammonolysis at 800 and 1000 °C, respectively. The combination of metal-modified single-source precursors and encapsulated porogens provides a convenient one-pot synthesis process to prepare mesoporous ceramic nanocomposites with controllable phase compositions and morphology.  相似文献   

14.
《Ceramics International》2017,43(18):16248-16257
Si3N4-based composite ceramic tool materials with (W,Ti)C as particle reinforced phase were fabricated by microwave sintering. The effects of the fraction of (W,Ti)C and sintering temperature on the mechanical properties, phase transformation and microstructure of Si3N4-based ceramics were investigated. The frictional characteristics of the microwave sintered Si3N4-based ceramics were also studied. The results showed that the (W,Ti)C would hinder the densification and phase transformation of Si3N4 ceramics, while it enhanced the aspect-ratio of β-Si3N4 which promoted the mechanical properties. The Si3N4-based composite ceramics reinforced by 15 wt% (W,Ti)C sintered at 1600 °C for 10 min by microwave sintering exhibited the optimum mechanical properties. Its relative density, Vickers hardness and fracture toughness were 95.73 ± 0.21%, 15.92 ± 0.09 GPa and 7.01 ± 0.14 MPa m1/2, respectively. Compared to the monolithic Si3N4 ceramics by microwave sintering, the sintering temperature decreased 100 °C,the Vickers hardness and fracture toughness were enhanced by 6.7% and 8.9%, respectively. The friction coefficient and wear rate of the Si3N4/(W,Ti)C sliding against the bearing steel increased initially and then decreased with the increase of the mass fraction of (W,Ti)C., and the friction coefficient and wear rate reached the minimum value while the fraction of (W,Ti)C was 15 wt%.  相似文献   

15.
《Ceramics International》2021,47(18):25449-25457
A dense β-Si3N4 coating toughened by β-Si3N4 nanowires/nanobelts was prepared by a combined technique involving chemical vapor deposition and reactive melt infiltration to protect porous Si3N4 ceramics in this work. A porous β-Si3N4 nanowires/nanobelts layer was synthesized in situ on porous Si3N4 ceramics by chemical vapor deposition, and then Y–Si–Al–O–N silicate liquid was infiltrated into the porous layer by reactive melt infiltration to form a dense composite coating. The coating consisted of well-dispersion β-Si3N4 nanowires/nanobelts, fine β-Si3N4 particles and small amount of silicate glass. The testing results revealed that as-prepared coating displayed a relatively high fracture toughness, which was up to 7.9 ± 0.05 MPa m1/2, and it is of great significance to improve thermal shock resistance of the coating. After thermal cycling for 15 times at ΔT = 1200 °C, the coated porous Si3N4 ceramics still had a high residual strength ratio of 82.2%, and its water absorption increased only to 6.21% from 3.47%. The results will be a solid foundation for the application of the coating in long-period extreme high temperature environment.  相似文献   

16.
《Ceramics International》2016,42(10):11593-11597
A new gelling system based on the polymerization of hydantion epoxy resin and 3,3′-Diaminodipropylamine (DPTA) was successfully developed for fabricating silicon nitride (Si3N4) ceramics. The effects of pH value, the dispersant content, solid volume fraction and hydantion epoxy resin amount on the rheological properties of the Si3N4 slurries were investigated. The relative density of green body obtained from the solid loading of 52 vol% Si3N4 slurry reached up to 62.7%. As the concentration of hydantion epoxy resin increased from 5 wt% to 20 wt%, the flexural strength of Si3N4 green body enhanced from 5.3 MPa to 31.6 MPa. After pressureless sintering at 1780 °C for 80 min, the sintered samples exhibited the unique interlocking microstructure of elongated β-Si3N4 grains, which was beneficial to improve the mechanical properties of Si3N4 ceramics. The relative density, flexural strength and fracture toughness of Si3N4 ceramics reached 97.8%, 687 MPa and 6.5 MPa m1/2, respectively.  相似文献   

17.
A dense SiC nanowires-toughened α-Si3N4 coating was prepared using a two-step technique for protecting porous Si3N4 ceramic against mechanical damage, and effect of SiC nanowires content on microstructures and properties of the coating were investigated. XRD, SEM and TEM analysis results revealed that as-prepared coatings consisted of α-Si3N4, O'-Sialon, SiC nanowires and Y–Al–Si–O–N glass phase. Furthermore, Vickers hardness of the coated porous Si3N4 ceramics increased gradually with the increasing SiC nanowires content from 0 to 10 wt%, which is attributed to the gradual improvement in intrinsic elastic modulus (E), hardness (H) and H3/E2 of the coatings. But, when the SiC nanowires content was 15 wt%, the thickness of the coating became relatively thinner, so that its protective ability was weakened and Vickers hardness started to decrease accordingly. Meanwhile, the assistance of SiC nanowires enhanced fracture toughness of the coatings obviously because SiC nanowires in the coatings can produce various toughening mechanisms during mechanical damage. When the SiC nanowires content was 10 wt%, its fracture toughness reached the maximum value, which was 6.27 ± 0.05 MPa·m1/2.  相似文献   

18.
《Ceramics International》2021,47(18):25689-25695
The high-temperature mechanical and dielectric properties of Si2N2O ceramics are often limited by the introduction of a sintering aid. Herein, dense Si2N2O was prepared at 1700 °C by hot-pressing oxidized amorphous Si3N4 powder without sintering additives. A homogeneous network with short-range order and a SiN3O structure was formed in the oxidized amorphous Si3N4 powder during the hot-pressing process. Si2N2O crystals preferentially nucleated at positions within the SiN3O structure and grew into rod-like and plate-like grains. Fully dense ceramics with mainly crystalline Si2N2O and some residual amorphous phases were obtained. The as-prepared Si2N2O possessed a good flexural strength of 311 ± 14.9 MPa at 1400 °C, oxidation resistance at 1500 °C, and a low dielectric loss tangent of less than 5 × 10−3 at 1000 °C.  相似文献   

19.
Cutting performances of silicon nitride (Si3N4) ceramic cutting tools with and without boride additive (2.5 vol% ZrB2 or TiB2) prepared by hot-pressing at 1500°C were investigated. Due to the α- to β-Si3N4 phase transformation and low densification temperature, boride-containing Si3N4 ceramics with high hardness and high toughness were obtained. The turning tests showed that the effective cutting lengths of the Si3N4–2.5 vol% TiB2 ceramic (∼2480 m) and Si3N4–2.5 vol% ZrB2 ceramic (∼2200 m) were higher than the monolithic Si3N4 ceramic (∼1780 m). As the toughness was improved while maintaining relative high hardness, the cutting performances of the boride-containing Si3N4-based inserts were improved by adding 2.5 vol% ZrB2 or TiB2. The improved cutting performance indicated that the boride-containing Si3N4 ceramics are expected to be used in the field of ceramic cutting tools.  相似文献   

20.
Si3N4 powders were prepared by combustion synthesis with 1- and 3-μm α-Si3N4, β-Si3N4 diluent and BN inert diluent. The maximum temperatures of samples with boron nitride (BN) as a diluent are about 1500–1600°C lower than that of samples with α-Si3N4 and β-Si3N4 as diluents are about 1600–1800°C. Moreover, the newly formed α-Si3N4 contents in the synthesized products with BN as diluent over 90 wt% are much higher than those with α-Si3N4 and β-Si3N4 as diluent about 20–40 wt%. The strip-like α-Si3N4, rod-like β-Si3N4 grains, and radiative shaped grains can be observed in the synthesized products. Finally, the effect of the diluent on the α-phase content of combustion synthesized Si3N4 is discussed, which provides key guidance for preparing Si3N4 powders with high α-phase content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号