首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 469 毫秒
1.
以环氧树脂为基体树脂,氧化铝、氮化硼、氮化硅和二氧化硅混杂粒子为导热填料,制备了一种新型高导热铝基板用导热绝缘胶粘剂。研究了填料种类与用量及硅烷偶联剂对胶粘剂热导率、体积电阻率、介电常数等性能的影响。对于此导热绝缘胶,随着混合填料填充量的增加,导热率呈型上升趋势;混合填料用量为60 wt%时,热导率达到3.81 W/(m.K),是纯环氧树脂胶的10倍以上。  相似文献   

2.
采用无压烧结工艺,以AlN和镁橄榄石(M2S)粉作为基体制备了纳米碳管(CNT)复合陶瓷。制备了热导率高、衰减量大及频率匹配特性良好的AlN—CNT复合微波衰减陶瓷。制备出的致密的M2S-CNT复合微波衰减材料有希望替代用在真空电子器件中的氧化铝多孔渗碳微波吸收材料。  相似文献   

3.
以氮化铝粉末为原料,添加5%Y2O3,通过注射成形工艺,制备出全致密、热导率为182 W/m·K的氮化铝陶瓷.研究了氮化铝陶瓷烧结过程中致密过程及组织变化,合理制订了复杂形状氮化铝陶瓷的烧结工艺,制备出了高尺寸精度,高热导率的氮化铝电子封装零件.  相似文献   

4.
以AlN和Al2O3为原料,Y2O3为烧结助剂,N2气氛下无压烧结制备了AlON-AlN复相材料;运用XRD及SEM等方法对复相材料的相组成、显微结构进行表征.研究了烧结温度和Al2O3含量对复相陶瓷烧结性能、力学性能和热导率的影响.结果表明AlON-AlN复相陶瓷的强度随着Al2O3加入量的增加而增大,在Al2O3加入量为30%时达到最大值,随着Al2O3含量进一步增加,强度也随之下降;热导率则随着Al2O3加入量的增加呈明显的下降趋势.  相似文献   

5.
以低密度聚乙烯(LDPE)为原料,添加不同含量的高导热氮化硅陶瓷颗粒和短切玻璃纤维,熔融挤出不同直径的Si3N4/LDPE杆料。采用热模压法制备了环氧模塑料(EMC)。研究了杆料直径、陶瓷填充量对EMC导热性能、介电性能的影响。结果表明:在相同填充量下,杆料直径越大,样品热导率越大;5mm含玻纤杆料φ(填充量)为40%,热导率高达2.1W/(m·K)。样品的εr随杆料填充量的增大而显著减小,φ5mm含玻纤杆料填充量为40%时降至最低,为3.25(1MHz)。  相似文献   

6.
以高纯硫酸铝氨分解的无定形Al2O3为原料,MgO、La2O3为烧结助剂,在N2气氛下热压烧结制备Al2O3陶瓷。研究了MgO和La2O3掺杂量对所制Al2O3陶瓷的相组成、显微结构、烧结性能、力学性能、热导率和介电性能的影响。结果表明:随着MgO或La2O3掺杂量的增加,Al2O3晶粒尺寸均逐渐减小而抗弯强度逐渐升高...  相似文献   

7.
以高纯的硫酸铝氨分解的无定形Al2O3为原料,MgO-Y2O3为烧结助剂,在N2气氛下热压烧结制备Al2O3陶瓷。研究了烧结助剂掺量对Al2O3材料的相组成、显微结构、烧结性能、力学性能、热导率和介电性能的影响。结果表明:所制Al2O3陶瓷具有细晶的显微结构特征和超高的抗弯强度。随着MgO-Y2O3掺量的增加,晶粒尺寸、抗弯强度和热导率先增大后减小,而介电损耗则呈现先减小后增大的变化规律。当MgO和Y2O3掺量均为质量分数2%时,Al2O3陶瓷呈现为较佳的综合性能:抗弯强度达最大值为603 MPa,热导率为36.47 W.m–1.K–1,介电损耗低至6.32×10–4。  相似文献   

8.
以Al2O3、Y2O3(质量比为2:3)为烧结助剂,在氮气氛或氩气氛中、1900~1970℃、30 MPa下热压制备SiC陶瓷.根据Archimedes原理测量烧结体的体积密度和显气孔率;采用XRD、SEM(EDS)及瞬态热导率测试仪分别对材料的物相、显微结构和热导率进行表征.研究了烧结温度、烧结气氛和烧结助剂含量对材料烧结性能和热导率的影响.结果表明,当烧结助剂质量分数为10%,获得SiC致密体(气孔率<0.30%),热导率高达182.50 W/(m·K);随着烧结助剂的质量分数降至6%,材料的致密度和热导率皆明显下降;在氩气氛中SiC与Al2O3、Y2O3具有更好的润湿性.  相似文献   

9.
采用固相反应法烧结制备了具有较高热导率的Zn0.9Mg0.1Al2O4 +x%TiO2 (质量分数0≤x≤3)微波介质陶瓷,并研究了TiO2对Zn0.9Mg0.1Al2O4陶瓷的晶相、微观形貌、微波介电和导热性能的影响。研究表明,随着TiO2掺杂量增加,Zn0.9Mg0.1Al2O4陶瓷中会出现少量非化学计量数化合物产生的相。同时,掺杂TiO2会促进晶粒生长。这是由于掺杂TiO2促进了烧结反应的进行,同时也抑制了微观晶格紊乱和宏观偏析,使Zn0.9Mg0.1Al2O4陶瓷的介电与导热性能得到提升。结果表明,Zn0.9Mg0.1Al2O4+2%TiO2陶瓷在1 500 ℃烧结时具有最佳的介电与导热性能,介电常数εr =8.57,品质因数与频率之积Q×f = 180 861 GHz,热导率为19.67 W/(m ·K)。  相似文献   

10.
本实验采用无压烧结技术,以Y2O3为烧结助剂制备AIN陶瓷。闪光法测试A1N陶瓷在室温到300℃的温度关系。结果表明:在25~300℃,A1N陶瓷热导率随温度升高而降低;热导率较高的A1N试样热扩散系数和热导率随测试温度升高而下降得更快;Y2O3添加量对A1N陶瓷热扩散系数和热导率随测试温度升高而下降的整体趋势影响不大。  相似文献   

11.
采用Si3N4陶瓷作填料,制备了一类新型高导热的环氧模塑料,研究了Si3N4的含量、分布及其形态对复合材料的导热性能及介电性能的影响。结果表明:随着Si3N4粉末体积填充量的增加,复合材料的热导率显著提高,当填充量体积分数为60%时,复合材料的热导率达到2.3W/(m·K),其介电常数随体积填充量的增加亦有所增加,但仍然维持在低水平。采用Agari模型进行理论计算的结果表明,该体系导热性能的提高与Si3N4填料之间热传导网络的形成有关。  相似文献   

12.
根据实验室设计的单层微测辐射热计所采用的Si3N4和SiO2双层膜复合支撑结构工艺,分别利用力学的等效截面方法和复合材料热导公式,从理论上推导了微桥桥腿正应力和热导的解析表达式.分析在其它因素不变的情况下,仅调整Si3N4和SiO2两者厚度比值(m)对微测辐射热计力学和热学性质的影响,并用ANSYS有限元仿真的方法验证了理论推导.  相似文献   

13.
采用微波加热法于1 100℃保温30 min(升温速率为20℃/min)合成Ba6-3xNd8+2xTi18O54(x=0.30~0.75,BNT)陶瓷粉末,再添加质量分数45%的B2O3-SiO2-CaO-MgO( BM)玻璃,在马弗炉中于900℃烧结2h制得BNT陶瓷.研究了所制陶瓷的微观结构及性能.结果表明:微波...  相似文献   

14.
采用微波加热合成了Ba4Nd9.33Ti18O54(BNT)微波介质固溶体陶瓷粉末,研究了微波加热工艺对BNT陶瓷相组成与微观形貌的影响。结果表明:微波加热相比于常规加热可以实现BNT陶瓷的低温快速合成;通过添加质量分数45%的B2O3-SiO2-CaO-MgO(BS)玻璃实现了BNT陶瓷于875℃烧结致密化。1 100℃微波合成的BNT陶瓷加BS玻璃烧结后具有最佳性能:εr=35.8,tanδ=12×10–4,σf=103.7 MPa,λ=2.576 W/(m.K)。  相似文献   

15.
AlF_3-MgF_2-SiO_2系低温共烧氧氟玻璃陶瓷性能研究   总被引:1,自引:1,他引:0  
制备了AlF3-MgF2-SiO2系低温共烧氧氟玻璃陶瓷材料,用XRD、SEM和阻抗分析仪等分析其烧结特性、显微结构、介电性能以及与Ag电极浆料共烧等性能。结果表明:该材料可以在900℃烧结致密化,烧成后的样品具有低的介电常数(6.2)和介质损耗(<0.002)、较低的热膨胀系数(7.4×10–6/K)、较高的弯曲强度(220 MPa)和热导率[2.4 W/(m.K)],能够与Ag电极浆料共烧,是一种很有应用前景的低温共烧陶瓷基板和无源集成介质材料。  相似文献   

16.
中红外光学材料的高温性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
红外光学材料是红外技术应用的基础之一。适用于3~5μm波段的中波红外光学材料正向高性能、大尺寸、低成本等方面发展,具有广阔的应用前景。介绍了尖晶石陶瓷、蓝宝石晶体和氟化镁多晶等中红外光学材料的基本性质,开展了制备技术、光学性能、力学性能和热学性能的研究,比较了温度对发射率、抗弯强度和热导率的影响。结果表明:尖晶石陶瓷具备较高的发射率;氟化镁多晶抗弯强度较差;蓝宝石晶体综合性能较佳,适用于制备基于高温应用的弧形光学器件。  相似文献   

17.
烧结气氛对CuO添加BiNbO_4陶瓷微波介电性能的影响   总被引:1,自引:0,他引:1  
对不同CuO添加量的BiNbO4陶瓷做了大气和N2气氛烧结研究。结果表明BiNbO4陶瓷对低氧分压气氛非常敏感。BiNbO4在高纯N2气氛下烧结产生大量的空位缺陷致使表观密度发生变化,这种空位缺陷多少与CuO加入量没有明显关系。但添加CuO降低了烧结温度,这种作用在N2条件下表现更为明显,出现了二次结晶现象。N2气氛条件下烧结的陶瓷微波性能没有显著恶化,对系列CuO添加的BiNbO4陶瓷介电常数,品质因数和介电常数温度系数随烧结气氛不同的变化分别作了介绍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号