首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
采用聚醚多元醇、多异氰酸酯、泡沫稳定剂、液态阻燃剂、催化剂和水制备了全水发泡阻燃硬质聚氨酯泡沫塑料,研究了水用量、催化剂、泡沫稳定剂及阻燃剂对聚氨酯硬泡性能的影响。结果表明,水用量影响聚氨酯硬泡的泡沫密度、压缩强度、尺寸稳定性、吸水率等性能;不同催化剂复配影响聚氨酯硬泡的泡孔结构;泡沫稳定剂影响泡孔均匀性和聚氨酯硬泡的导热性能;磷酸三乙酯(TEP)对硬泡阻燃性能的影响优于磷酸三氯丙酯(TCPP)和阻燃聚醚多元醇(F-7190)。随TEP用量的增加,聚氨酯硬泡的氧指数增大,压缩强度降低;随F-7190用量增加,聚氨酯硬泡的氧指数略有增大,压缩强度先增大后变小。  相似文献   

2.
以聚醚多元醇、聚酯多元醇、聚异氰酸酯PAPI、泡沫稳定剂、复合催化剂、发泡剂HCFC-141b、复合阻燃剂等为原料,制备了用于建筑彩钢复合板的组合聚醚及改性聚异氰脲酸酯(PIR)泡沫。该组合聚醚具有较好的流动性及贮存稳定性;泡沫制品压缩强度高,导热系数低,阻燃性能好,尺寸稳定性佳,与钢板的粘接强度大,完全满足连续法彩钢复合板对短脱模时间、高泡沫强度、高阻燃性等方面的要求,产品性能与国外同类产品相当。同时讨论了多元醇、催化剂、阻燃剂等因素对泡沫性能的影响。  相似文献   

3.
无卤阻燃增强硬质聚氨酯泡沫塑料的研究   总被引:1,自引:0,他引:1  
袁才登  曾海唤  陈苏  彭艳 《塑料工业》2014,42(9):118-121
采用聚醚多元醇、聚酯多元醇、多异氰酸酯、泡沫稳定剂、催化剂及发泡剂等为基本原料,以聚磷酸铵(APP)、可膨胀石墨(EG)及膨润土(BT)为阻燃剂及填料,通过一步发泡法制备了无卤阻燃增强硬质聚氨酯泡沫塑料。研究了APP、EG、BT对泡沫力学性能、阻燃性能以及泡孔结构的影响。结果表明,APP质量分数为15%,EG为7.5%,膨润土为2.5%时可以制得力学性能和阻燃性能均优良的聚氨酯泡沫塑料。在该条件下,泡沫的压缩强度为0.271 MPa,平均孔径为322μm,极限氧指数达到29.5%。  相似文献   

4.
采用聚醚多元醇、多亚甲基多苯基多异氰酸酯(PAPI)、泡沫稳定剂、催化剂、高效阻燃剂、发泡剂、含溴环氧树脂等原料通过一步法制备了聚氨酯硬质泡沫材料,研究了不同含溴环氧树脂添加比例的聚氨酯硬质泡沫材料的压缩强度和阻燃指数。结果表明,随着含溴环氧树脂添加量的增加,压缩强度出现先增加后减少的趋势。在含溴环氧树脂添加量占白料总质量10%时,压缩性能最佳;随着含溴环氧树脂添加量的增加,聚氨酯硬泡的极限氧指数呈上升趋势;高效阻燃剂用量可以使改性聚氨酯硬泡极限氧指数得到显著增加,达到30%以上。  相似文献   

5.
以大豆分离蛋白、高活性聚醚、聚合物多元醇、交联剂、发泡剂、泡沫稳定剂和混合异氰酸酯为原料,自由发泡、常温熟化制备了大豆蛋白基高回弹聚氨酯软泡。研究了大豆蛋白质(SPI)对聚氨酯泡沫物理性能、力学性能、孔结构和热性能的影响。结果表明:SPI添加量对泡沫物理和力学性能影响最大。随着SPI含量增加,泡沫的密度、尺寸稳定性提高,压陷硬度和舒适因子提高增大;回弹率下降,断裂伸长率减小,而拉伸强度先增大后减小。SPI能够提高聚氨酯的热稳定性,但最好低于150℃使用。  相似文献   

6.
在聚酯多元醇中加入复合无机阻燃剂和复合催化剂,与多异氰酸酯反应制备硬质聚异氰脲酸酯(PIR)泡沫塑料。研究了无机阻燃剂和复合催化剂对泡沫的氧指数、尺寸稳定性等硬泡性能的影响。结果表明,当聚酯多元醇为100份,复合催化剂总量4.5份,且叔胺类催化剂与有机金属催化剂质量比为4∶1,复合阻燃剂总量20份,且Si O2与膨胀石墨质量比为1∶2,制得的PIR硬泡氧指数达到30%,导热系数0.019 W/(m·K),密度48 kg/m3,线性收缩率0.20%,压缩强度185 k Pa。  相似文献   

7.
用酚醛-三聚氰胺聚合物改性的聚醚多元醇(PFMP-Polyol)制备硬质聚氨酯泡沫,考察了PFMP-Polyol的用量对泡沫的发泡性能、物理机械性能的影响。结果表明,在HCFC-141b发泡体系中,PFMP-Polyol的加入可提高发泡反应速度,使泡沫泡孔细腻、均匀,泡沫的压缩强度、尺寸稳定性均有明显的提高;用于环戊烷发泡体系中,当PFMP-Polyol的质量分数占聚醚多元醇的30%、模压泡密度在34.2 kg/m~3,压缩强度(水平方向)为254.2 kP,导热系数可降低至20.8 mW/(m·K)。  相似文献   

8.
以聚醚多元醇、匀泡剂、开孔剂、催化剂、增塑剂和多亚甲基多苯基多异氰酸酯(PAPI)为原料制备了海管节点填充用全水发泡高密度开孔聚氨酯泡沫塑料。探讨了聚醚多元醇、匀泡剂与开孔剂、催化剂、增塑剂的选择和用量、自由发泡密度及过填充度对聚氨酯模压泡沫表观芯密度、泡沫状态、开孔率及压缩强度的影响。结果表明:聚醚多元醇C310 30份、聚醚R6350 30份、聚醚F330N 40份、匀泡剂S28 1份、开孔剂O-1 0.4份、催化剂C6 0.4份、催化剂C7 0.2份、催化剂C1 0.1份、增塑剂T2 10份、自由发泡密度为145 kg/m3、过填充度为20.7%时,制备的模压泡沫材料表观芯密度为175 kg/m3、开孔率91%、压缩强度2.2 MPa,能较好地满足海管节点填充的应用。  相似文献   

9.
复合保温板用聚氨酯硬泡的阻燃性能研究   总被引:4,自引:2,他引:2  
探讨了氢氧化铝、三聚氰胺、DMMP、TCEP的阻燃机理及阻燃效果,并对几种阻燃剂进行了复配使用,同时对聚异氰脲酸酯指数对燃烧性能的影响进行了研究。结果表明,DMMP的阻燃效果最好,当其用量为9份时,就能达到国家标准B2级。不同阻燃剂复合使用,其协同效应显著。在聚异氰脲酸酯泡沫中,随着异氰酸酯指数的升高,泡沫的阻燃性变好,当异氰酸酯指数为3.0时,泡沫的阻燃级别达到国家标准B2级。以混合聚醚多元醇70份、聚酯多元醇30份、异氰酸酯指数1.20、硅油稳定剂2份、复合催化剂1份、发泡剂HCFC—141b20份与水1份、复合阻燃剂12份等为基础配方,所得泡沫密度约为32k/m^3,压缩强度约170kPa,阻燃性能符合国家标准GB/T8624—97B2级,尺寸稳定性良好。  相似文献   

10.
将水稻秸秆粉碎为粒径250~590 μm的粉末,利用成熟的催化常压加热液化技术将水稻秸秆粉末液化制得液化物,以其为原料,五甲基二乙烯三胺(PC5)和N,N-二甲基环己胺(PC8)为复合催化剂,正戊烷为发泡剂,与多苯基甲烷多异氰酸酯(PAPI)反应通过物理发泡法制备硬质聚氨酯泡沫(PURF)。另外采用全水发泡法制备了聚氨酯泡沫作为对比。对物理发泡制备PURF的条件进行了优化,较优的制备条件为催化剂中PC5和PC8的质量比4:5,泡沫稳定剂硅油B8462用量(以液化物质量计,下同)4%,发泡剂用量15%,该条件下制备的PURF的拉伸强度为347 kPa,压缩强度为181 kPa。采用傅里叶变换红外光谱(FT-IR)和扫描电镜(SEM)对比了物理发泡和全水发泡制得的泡沫,结果显示,通过物理发泡制得的水稻秸秆基聚氨酯泡沫相比于全水发泡聚氨酯泡沫,体系中异氰酸根浓度低,泡沫泡孔开孔率低,制得的泡沫力学性能略优。  相似文献   

11.
In this article, a flame retardant microcapsule ammonium polyphosphate microencapsulated by polyurea (POAPP) was successfully synthesized by interfacial polymerization method using ammonium polyphosphate (APP) as core and polyurea as shell. The microencapsulation is observed by scanning electron microscopy and characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis and hydroscopicity test, which prove the success in synthesizing microencapsulation. When the POAPP is added into rigid polyurethane foam (RPUF), the flame retardant and mechanical properties are investigated using cone calorimeter, limited oxygen index test, and compressive strength test. The PHRR of RPUF-POAPP20 decreased from 336.52 kW/m2 (Ref. RPUF) to 203.84 kW/m2 and the THR of RPUF-POAPP20 was only 7.6 MJ/m2, which is 33.9% lower than that of Ref. RPUF. Furthermore, the limiting oxygen index of RPUF-POAPP20 reaches 24.8%, which increased by 36.3% compared to Ref. RPUF. Whereas the maximum compressive strength of RPUF-POAPP5 was 7.46 MPa, which is higher than that of RPUF-APP5.  相似文献   

12.
The comparative study of rigid polyurethane foam (RPUF) nanocomposites based on graphene nanosheets (GNSs) and carbon nanotubes (CNTs) has been reported. A GNS content of 0.3 wt% in polyol turns to be optimal for its foamability with the isocyanate component, as verified by rheology measurements. Scanning electron microscopy and transmission electron microscopy observations reveal a homogeneous dispersion of GNSs and CNTs in the RPUF nanocomposites. Only 0.3 wt% loading of GNSs and CNTs led to 36% and 25% improvement respectively in the compressive modulus of the RPUF nanocomposites. Meanwhile, 16 °C and 14 °C improvements in the glass transition temperature confirm the important role of both the nanofillers in the heat resistance of RPUF nanocomposites. These results additionally indicate that GNSs work more effectively than CNTs in mechanical property and heat resistance enhancement of the RPUF nanocomposites. The superiority of GNSs over CNTs can be attributed to their wrinkled surface structure, unique two‐dimensional geometrical morphology and higher specific surface area, which results in stronger interaction and restriction of segmental motion at the interface between the GNSs and the RPUF matrix. In addition, changes in the thermal conductivity of the nanocomposites are negligible, indicating that incorporation of GNSs and CNTs will not hinder the application of RPUF nanocomposites as thermal insulators. On the contrary, the enhancement in mechanical properties and heat resistance will undoubtedly expand the application range of polyurethane foam materials. Copyright © 2012 Society of Chemical Industry  相似文献   

13.
The flame-retardant rigid polyurethane foam (RPUF) composites are fabricated by ammonium polyphosphate (APP) with pentaerythritol phosphate (PEPA), phenoxycycloposphazene (PCP), and aluminum diethylphosphinate (ADP), respectively, which are labeled as RPUF-1, RPUF-2, and RPUF-3. The influence of flame retardants on the apparent density and compressive strength of RPUF is studied. The results reveal that flame retardants not only improve the apparent density, but also improve the compressive strength of RPUF composites. The limiting oxygen index (LOI) results reveal that these inorganic/organic phosphorus-based flame retardants improve the LOI significantly, especially for RPUF-2 and RPUF-3 systems. The cone calorimeter test results suggest that the peak of heat release of RPUF-1, RPUF-2, and RPUF-3 systems decrease by 38%, 41%, and 52% likened to that of pure RPUF. And APP and ADP system performs best in declining the heat release. And APP and PEPA systems perform best in decreasing the smoke release. The flame retardancy mechanism of RPUF composites is analyzed in details.  相似文献   

14.
采用一步法合成聚氨酯硬质泡沫塑料,考察了催化剂DABCO8154对聚氨酯塑料发泡体系的发泡时间、表观密度、热稳定性能、力学性能等的影响。随着DABCO8154用量的增加,发泡时间缩短,表观密度先下降后提高。压缩性能、弯曲性能随着DABCO8154含量增加逐渐降低。随着DABCO8154的加入,制品热稳定性提高。  相似文献   

15.
介绍了硬质聚氨酯泡沫生产中戊烷发泡体系的相容性、流动性及其发泡制品的尺寸稳定性、压缩强度、绝热性和阻燃性等,并根据各性能存在的问题总结了相应的技术解决方案.  相似文献   

16.
制备了孔径约0.5 mm的全水发泡硬质聚氨酯泡沫塑料。研究了三乙醇胺(TEA)用量对聚氨酯泡沫塑料发泡时间、表观密度、导热性能、力学性能等的影响规律。TEA是体系反应的催化剂,随着TEA含量增大后发泡时间变短。TEA含量少于7份时,发泡反应强于凝胶反应,制品泡孔直径随着其含量增加而变大,表观密度、热导率、压缩强度、拉伸强度和弯曲强度下降,断裂伸长率上升。TEA含量大于7份时,交联作用占主要地位,制品泡孔直径随着其含量增加而变小,表观密度、热导率、压缩强度、拉伸强度和弯曲强度上升。热失重分析也表明TEA含量大于7份后产生了交联作用。  相似文献   

17.
用大豆油多元醇替代石化聚醚多元醇制备出了硬质聚氨酯泡沫塑料(RPUF),考察了石化聚醚多元醇和大豆油多元醇的比例以及RPUF密度对RPUF性能的影响。结果表明,随着大豆油多元醇用量的增加,RPUF的冲击强度和压缩模量减小,压缩屈服点逐渐消失,玻璃化转变温度升高;但随着大豆油基RPUF密度的增加,其冲击强度、压缩模量和储能模量都得到了提高,压缩模量最高可达56.44 MPa。  相似文献   

18.
采用结构型阻燃聚醚多元醇、聚酯多元醇、阻燃硅油、催化剂、发泡剂和阻燃剂等原料,通过一步法喷涂制备阻燃型喷涂硬质聚氨酯泡沫(RPUF)。研究了结构型阻燃聚醚多元醇和阻燃硅油对RPUF性能的影响,并在建筑工程中进行了实际应用。结果表明,以100份多元醇为基准,其它组分不变,结构型阻燃聚醚多元醇的添加量为30份、阻燃硅油的添加量为5份时,制备出的RPUF的物理性能、阻燃性能和储存性能最佳。另外,在建筑工程应用中,该产品性能及施工性能均良好。  相似文献   

19.
Rigid polyurethane foams (RPUF) with nanoporous graphene (NPG) were synthesized and their properties, including density, mechanical, morphological, and thermal‐resistant properties were studied. In the current work, polyols of the RPUF formulation were synthesized and NPG content was varied from 0.1 to 0.5 wt %. Scanning electron microscopy (SEM) observation was used to observe the dispersion of NPG and cell size in the RPUF nanocomposites. Only 0.25 wt % of NPG improved compressive strength and modulus respectively by 10.7% and 66.5%. The TGA analysis confirmed that an increase in NPG loading slightly increase the degradation temperature of the samples. These results additionally indicated that NPG enhances the mechanical properties of the RPUF nanocomposites more effectively compared to other nanoparticles (clay, silica etc.). The superiority of NPG over other nanoparticles can be attributed to unique two‐dimensional geometrical morphology and a higher specific surface area. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45001.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号