首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 361 毫秒
1.
曾健平  邹韦华  易峰  田涛 《半导体技术》2007,32(11):984-987
提出一种采用0.25 μm CMOS工艺的低功耗、高电源抑制比、低温度系数的带隙基准电压源(BGR)设计.设计中,采用了共源共栅电流镜结构,运放的输出作为驱动的同时也作为自身电流源的驱动,并且实现了与绝对温度成正比(PTAT)温度补偿.使用Hspice对其进行仿真,在中芯国际标准0.25 μm CMOS工艺下,当温度变化范围在-25~125℃和电源电压变化范围为4.5~5.5 V时,输出基准电压具有9.3×10-6 V/℃的温度特性,Vref摆动小于0.12 mV,在低频时具有85 dB以上的电源电压抑制比(PSRR),整个电路消耗电源电流仅为20μA.  相似文献   

2.
设计了一种应用于低压差线性稳压器(LDO)的低功耗带隙基准电压源电路。一方面,通过将电路中运放的输入对管偏置在亚阈值区,大大降低了运放的功耗;另一方面,采用零功耗的启动电路,进一步降低了整体电路的功耗。该基准电压源采用旺宏0.35μm CMOS工艺流片,经测试,基准输出电压的温度系数为33 ppm/℃,总电流消耗仅为12μA。  相似文献   

3.
基于带隙基准源的工作原理以及如何提高温度特性的思想,设计了一种无运算放大器且具有新型高阶温度补偿的带隙基准电路。通过对传统带隙基准电路结构的改进,提出一种新的高阶温度补偿方法。该电路在不使用运放的情况下,分别产生较为精准的正、负温度系数电流,通过共源-共栅电流镜将负温度系数电流降阶,并对其一阶、二阶温度系数进行补偿。电路采用0.18μm CMOS工艺实现,芯片尺寸为240μm×220μm,电源抑制比(PSRR)-64dB。测试结果表明:输出基准电压均值为580.6 mV,在-45~120℃范围内温度系数为7.5×10-6/℃,整个电路的功耗为45μW。  相似文献   

4.
本文提出一种高电源抑制比、高阶温度补偿CMOS带隙基准电压源。该基准源的核心电路结构由传统的Brokaw带隙基准源和一个减法器构成。文中采用第二个运放产生一个负温度系数的电流来增强曲率补偿,同时把该负温度系数电流与核心基准源电路产生的正温度系数电流求和得到一个与温度无关的电流给运放提供偏置电流。该电路采用0.35umCMOS工艺实现,仿真结果表明PSRR在1kHz时达到88dB,-40-125℃的范围内温度系数为1.03ppm/℃。  相似文献   

5.
基于工作在亚阈值区的MOS器件,运用CMOS电流模基准时CATA和PTAT电流求和的思想,提出一种具有低温漂系数、高电源抑制比(PSRR)的CMOS电压基准源,该电路可同时提供多个输出基准电压,且输出电压可调.该基准源基于CSMC 0.5 μm标准CMOS工艺,充分利用预调节电路并改进电流模基准核心电路,使整个电路的电源抑制比在低频时达到122 dB,温度系数(TC)在0~100℃的温度范围内约7 ppm/℃.  相似文献   

6.
基于SMIC 0.18μm CMOS工艺,设计了一种带分段曲率补偿的低温度系数的高阶带隙基准电压源。首先设计了传统一阶带隙基准,温度系数最低可以达到13×10-6/℃。在传统一阶带隙基准电压源的基础上,加入低功耗的分段补偿电路实现了高阶补偿,在显著降低了温度系数的同时,实现了低功耗,并且可以实现一阶、高阶基准电压的可控制输出。仿真结果显示,在-40~125℃温度范围内,温度系数最低可以达到3.5×10-6/℃,比一阶基准降低约73%,线性调整率为0.08%,PSRR在1000 Hz可以达到-61 dB,静态电流为4.7μA。高阶基准源电路在实现低温度系数的同时兼顾了较低功耗,在同类型电路中具有明显优势。  相似文献   

7.
提出了一种超低温漂、低功耗亚阈值全CMOS基准电压源。利用工作在亚阈值区的3.3 V MOS管与1.8 V MOS管的栅源电压差,产生具有负温度系数的ΔVTH和具有正温度系数的VT,经过相互调节,得到与温度无关的基准电压。采用了共源共栅电流镜,以降低电源抑制比(PSRR)和电压调整率。基于SMIC 0.18 μm CMOS工艺对电路进行了仿真。仿真结果表明,在-22 ℃~142 ℃温度范围内,温度系数为2.8×10-6/℃;在1.3~3.3 V电源电压范围内,电压调整率为0.48%;频率为100 Hz时,PSRR为-62 dB;功耗仅为191 nW,芯片面积为0.005 mm2。  相似文献   

8.
采用ASMC0.35μm CMOS工艺设计了低功耗、高电源抑制比(PSRR)、低温漂、输出1V的带隙基准源电路。该设计中,偏置电压采用级联自偏置结构,运放的输出作为驱动的同时也作为自身电流源的驱动,实现了与绝对温度成正比(PTAT)温度补偿。通过对其进行仿真验证,当温度在-40~125℃和电源电压在1.6~5V时,输出基准电压具有3.68×10-6/℃的温度系数,Vref摆动小于0.094mV;在低频时具有-114.6dB的PSRR,其中在1kHz时为-109.3dB,在10kHz时为-90.72dB。  相似文献   

9.
对带隙基准电压源的温度系数和功耗进行了分析研究,采用与绝对温度成正比(PTAT)的电流和与绝对温度互补(CTAT)的电流加权和技术,同时采用放大器工作在亚阈值区技术及运放失调补偿技术,基于0.4μm的CMOS工艺设计了一个低温度系数、低功耗的基准电压电路。通过电源电压、工作温度及工艺角对基准电压影响的仿真,结果表明该带隙基准源典型的温度系数为2×10~(-6)/℃,功耗为5.472μW,基准电压为1.32 V,电源抑制比为83.5 dB,实现了低温度系数、低功耗特性,且电路工作稳定。  相似文献   

10.
黄静  唐路  陈庆  施敏 《半导体技术》2012,37(10):760-763
基于传统带隙基准源的电路结构,采用电平移位的折叠共源共栅输入级和甲乙类互补推挽共源输出级改进了其运算放大器的性能,并结合一阶温度补偿、电流负反馈技术设计了一款低温度系数、高电源电压抑制比(PSRR)的低压基准电压源。利用华润上华公司的CSMC 0.35μm标准CMOS工艺对电路进行了Hspice仿真,该带隙基准源电路的电源工作范围为1.5~2.3 V,输出基准电压为(600±0.2)mV;工作温度为10~130℃,输出电压仅变化8μV,温度系数为1.86×10-6/℃,低频时PSRR为-72 dB。实际流片进行测试,结果表明达到了预期结果。  相似文献   

11.
提出一种输出低于1V的、无电阻高电源抑制比的CMOS带隙基准源(BGR).该电路适用于片上电源转换器.用HJTC0.18μm CMOS工艺设计并流片实现了该带隙基准源,芯片面积(不包括pad和静电保护电路)为0.031mm2.测试结果表明,采用前调制器结构,带隙基准源电路的输出在100Hz与lkHz处分别获得了-70与-62dB的高电源抑制比.电路输出一个0.5582V的稳定参考电压,当温度在0~85℃范围内变化时,输出电压的变化仅为1.5mV.电源电压VDD在2.4~4V范围内变化时,带隙基准输出电压的变化不超过2mV.  相似文献   

12.
基于线性分段补偿的基本原理,依据输出支路内部的温度负反馈结构,提出了一种结构简单、适应不同开口方向的高阶补偿方法。并设计了一种基于电流镜结构的低温漂、高精度的电压基准电路。CSMC 0.35 μm CMOS工艺的仿真结果表明,经高阶补偿的电压模基准,在-40~125 ℃温区范围内温度系数为2.84×10-6/℃,低频100 Hz时的PSRR达到-70.6 dB,10 kHz为-63.36 dB。当电源电压在2~3 V范围内变化时,其电压值波动为3 mV/V。整个带隙基准电压源具有较好的综合性能。  相似文献   

13.
基于工作在亚阈值区的MOS器件,运用CMOS电流模基准对CATA和PTAT电流求和的思想.提出一种具有低温漂系数、高电源抑制比(PSRR)的CMOS电压基准源,该电路可同时提供多个输出基准电压,且输出电压可调。该基准源基于CSMC0.5μm标准CMOS工艺,充分利用预调节电路并改进电流模基准核心电路。使整个电路的电源抑制比在低频时达到122dB,温度系数(TC)在0-100℃的温度范围内约7ppm/℃。  相似文献   

14.
在传统带隙基准电压源电路结构的基础上,通过在运放中引入增益提高级,实现了一种用于音频Σ-ΔA/D转换器的CMOS带隙电压基准源。在一阶温度补偿下实现了较高的电源抑制比(PSRR)和较低的温度系数。该电路采用SIMC 0.18-μm CMOS工艺实现。利用Cadence/Spectre仿真器进行仿真,结果表明,在1.8 V电源电压下,-40~125℃范围内,温度系数为9.699 ppm/℃;在27℃下,10 Hz时电源抑制比为90.2 dB,20 kHz时为74.97 dB。  相似文献   

15.
Novel high power supply rejection ratio (PSRR) high-order temperature-compensated subthreshold metal-oxide-semiconductor (MOS) bandgap reference (BGR) is proposed in Semiconductor Manufacturing International Corporation (SMIC) 0.13 μm complementary MOS (CMOS) process. By adopting subthreshold MOS field-effect transistors (MOSFETs) and the piecewise-curvature temperature-compensated technique, the output reference voltage's temperature performance of the subthreshold MOS BGR is effectively improved. The subthreshold MOS BGR achieves high PSRR performance by adopting the technique of pre-regulator. Simulation results show that the temperature coefficient (TC) of the subthreshold MOS BGR is 1.38×10?6/°C when temperature is changed from ?40 °C to 125 °C with a power supply voltage of 1.2 V. The subthreshold MOS BGR achieves the PSRR of ?104.54 dB, ?104.54 dB, ?104.5 dB, ?101.82 dB and ?79.92 dB at 10 Hz, 100 Hz, 1 kHz, 10 kHz and 100 kHz respectively.  相似文献   

16.
一种基于控制PTAT电流的温度系数可调带隙基准源   总被引:1,自引:1,他引:0  
设计了一种温度系数可调的带隙基准源,利用控制PTAT电流的大小产生具有不同温度系数的基准电压,仅采用两个双极型晶体管,具有较好的电源噪声抑制特性。与传统方法相比,简化了电路结构,减小了占用芯片面积,改善了版图设计的对称性。该电路在更宽的调节范围内,通过4位控制信号可实现16级的温度系数调节,同时通过设计专门电路提高了电源噪声抑制比。采用0.35μm CMOS工艺实现了该带隙基准源。仿真结果表明,基准电压的温度系数可在-1.76~+1.84 mV/℃范围内进行调节,低频时基准电压的PSRR达到-110 dB。  相似文献   

17.
采用TSMC 0.25μm CMOS工艺,提出了一种基于衬底驱动放大器的高精度带隙基准(BGR)电路。采用衬底驱动技术的放大器,有效地降低了电源电压;通过PTAT2电流产生电路对基准电路进行2阶温度补偿,有效地降低了输出基准电压的温度系数;采用改进型共源共栅输出级电路,很好地改善了电路的电源抑制比(PSRR)。HSPICE仿真结果显示:在2 V供电电压下,输出基准电压为1.261 V,温度系数为8.24×10-6/℃,低频电源抑制比-为91 dB。整体电路功耗为1.37 mW。  相似文献   

18.
设计了一种基于反馈电路的基准电压电路。通过正、负两路反馈使输出基准电压获得了高交流电源抑制比(PSRR),为后续电路提供了稳定的电压。采用NPN型三极管,有效消除了运放失调电压对带隙基准电压精度产生的影响,并对电路进行温度补偿,大大减小了温漂。整个电路采用0.35μm CMOS工艺实现,通过spectre仿真软件在室温27℃、工作电压为4 V的条件下进行仿真,带隙基准的输出电压为1.28 V,静态电流为2μA,在-20~80℃范围内其温度系数约为18.9×10-6/℃,交流PSRR约为-107 dB。  相似文献   

19.
一种10-ppm/~oC低压CMOS带隙电压基准源设计   总被引:2,自引:0,他引:2  
在对传统CMOS带隙电压基准源电路分析和总结的基础上,综合一级温度补偿、电流反馈和电阻二次分压技术,提出了一种10-ppm/oC低压CMOS带隙电压基准源。采用差分放大器作为基准源的负反馈运放,简化了电路的设计,放大器的输出用于产生自身的电流源偏置,提高了电源抑制比(PSRR)。整个电路采用TSMC 0.35mm CMOS工艺实现,采用Hspice进行仿真,仿真结果证明了基准源具有低温度系数和高电源抑制比。  相似文献   

20.
设计了一款低温度系数的自偏置CMOS带隙基准电压源电路,分析了输出基准电压与关键器件的温度依存关系,实现了低温度系数的电压输出。后端物理设计采用多指栅晶体管阵列结构进行对称式版图布局,以压缩版图面积。基于65 nm/3.3 V CMOS RF器件模型,在Cadence IC设计平台进行原理图和电路版图设计,并对输出参考电压的精度、温度系数、电源抑制比(PSRR)和功耗特性进行了仿真分析和对比。结果表明,在3.3 V电源和27℃室温条件下,输出基准电压的平均值为765.7 mV,功耗为0.75μW;在温度为-55~125℃时,温度系数为6.85×10~(-6)/℃。此外,输出基准电压受电源纹波的影响较小,1 kHz时的PSRR为-65.3 dB。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号