首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
研制了一种新型的非选择性再生长掩埋异质结构长波长超辐射二极管(SLD).该器件采用渐变组分体材料InGaAs作为有源区,由金属有机物化学气相外延制备.150mA下,SLD发射谱宽的半高全宽为72nm,覆盖范围从1602到1674nm.发射谱光滑、平坦,光谱波纹在1550到1700nm的范围内小于0.3dB.室温连续工作,注入电流200mA下,器件获得了4.3mW的出光功率.器件适用于气体探测器和L-band光纤通信的光源.  相似文献   

2.
模拟了垂直腔面发射激光器(VCSEL)的反射谱和量子阱增益谱,采用金属有机物化学气相沉积设备外延生长了980 nm的垂直腔面发射激光器,制作了氧化孔径为14 μm的内腔式氧化限制型VCSEL器件,其阈值电流为3.3mA,阈值电压为1.8V,斜率效率为0.387 W/A,室温直流电流为22.8 mA时,输出光功率为5 mW.  相似文献   

3.
采用低压金属有机化合物气相外延(LP-MOCVD),制备了顶端发射氧化物限制、内腔接触结构980nm的垂直腔面发射激光器.应用了选择氧化和自对准工艺来实现电流限制.在28mA脉冲电流驱动下,器件的输出功率为10.1mW,斜率效率为0.462mW/mA.脉冲工作下,最高输出功率为13.1mW.室温连续工作下,输出功率为7.1mW,发射波长为974nm,光谱半宽为0.6nm.研究了氧化孔径对阈值电流和微分电阻的影响,结果表明较小的氧化孔径可以获得低的阈值电流.  相似文献   

4.
对隧道再生多有源区内腔接触式垂直腔面发射激光器(VCSEL)材料特性进行了实验研究,得到了VCSEL外延片量子阱增益谱峰值波长、谐振腔谐振波长、DBR反射谱中心波长及材料的生长厚度偏差等重要信息。如果谐振腔谐振波长比增益谱峰值波长长20nm以上,阈值条件很难得到满足,器件很难实现激射。符合模拟参数生长的双有源区隧道再生VCSEL实现了室温激射。氧化孔径8.3μm器件,在11mA注入电流下,获得5mW的输出功率,斜率效率0.702mW/mA,激射波长970nm。  相似文献   

5.
采用MOCVD生长了InGaAsP/InGaP/AlGaAs材料系分别限制异质结构(SCH) 的高功率半导体激光器.对于厚度为10nm 的单量子阱,通过计算量子阱增益谱优化了器件的激射波长. 在室温下外延材料的荧光峰值波长为764nm,由于In原子的记忆效应(In carry-over effect)和As/P的替换作用使材料的InGaP/AlGaAs界面不陡峭,通过在InGaP/AlGaAs间长一层5nm的GaAsP大大改善了界面质量. 器件的阈值电流从界面改善前的560mA 减小到改善后的450mA, 斜率效率也从0.61W/A提高到了0.7W/A, 特别是单面最大输出功率已经从370mW 增加到了940mW,发生灾变性光学损伤时的工作电流已经由原来的1100mA 上升为1820mA.  相似文献   

6.
采用MOCVD生长了InGaAsP/InGaP/AlGaAs材料系分别限制异质结构(SCH) 的高功率半导体激光器.对于厚度为10nm 的单量子阱,通过计算量子阱增益谱优化了器件的激射波长. 在室温下外延材料的荧光峰值波长为764nm,由于In原子的记忆效应(In carry-over effect)和As/P的替换作用使材料的InGaP/AlGaAs界面不陡峭,通过在InGaP/AlGaAs间长一层5nm的GaAsP大大改善了界面质量. 器件的阈值电流从界面改善前的560mA 减小到改善后的450mA, 斜率效率也从0.61W/A提高到了0.7W/A, 特别是单面最大输出功率已经从370mW 增加到了940mW,发生灾变性光学损伤时的工作电流已经由原来的1100mA 上升为1820mA.  相似文献   

7.
梁琨  陈弘达  杜云  唐君  杨晓红  吴荣汉 《半导体学报》2002,23(11):1135-1139
采用相同生长结构的MOCVD外延片,研究制备适用于单片集成的垂直腔面发射与接收器件及列阵,发射及接收波长相同,由谐振腔模式决定.采用双氧化电流限制结构,优化串联电阻,提高电光转换效率,制备980nm波段发光器件及1×16列阵芯片,发射谱线半宽≤4.8nm,注入电流为50mA时,发射功率为0.7mW.对列阵芯片用探针进行在线检测,器件均有良好的发光特性.接收器件光电响应具有良好的波长和空间选择特性,谐振接收波长可利用不同角度光入射实现简单易行的调节.通过腐蚀器件顶部DBR的方法调节入射镜反射率,可以分别实现具有单片集成结构的谐振增强型发射和接收器件的优化设计.  相似文献   

8.
采用相同生长结构的MOCVD外延片,研究制备适用于单片集成的垂直腔面发射与接收器件及列阵,发射及接收波长相同,由谐振腔模式决定.采用双氧化电流限制结构,优化串联电阻,提高电光转换效率,制备980nm波段发光器件及1×16列阵芯片,发射谱线半宽≤4.8nm,注入电流为50mA时,发射功率为0.7mW.对列阵芯片用探针进行在线检测,器件均有良好的发光特性.接收器件光电响应具有良好的波长和空间选择特性,谐振接收波长可利用不同角度光入射实现简单易行的调节.通过腐蚀器件顶部DBR的方法调节入射镜反射率,可以分别实现具有单片集成结构的谐振增强型发射和接收器件的优化设计.  相似文献   

9.
王夏霄  张宇宁  魏良勇  高洋洋 《红外与激光工程》2016,45(12):1220003-1220003(5)
基于现代化战争武器和惯导系统对光纤陀螺快启动的强烈需求,对光纤陀螺启动最慢的核心器件光源超辐射发光二极管(SLD)启动时波长的变化机理进行了研究。主要包括对SLD波长随驱动电流和管芯温度的变化规律进行了理论分析和实验验证,得出了SLD的平均波长随驱动电流的增大而减小,变化量约为0.15 nm/mA,随温度线性增加,变化量大约为0.5 nm/℃;根据理论分析驱动电流和管芯温度启动时的变化规律建立了SLD启动时波长的变化模型;通过实验测试得到的驱动电流和管芯温度启动测试结果推导出了SLD启动波长最大变化量达到18 000 ppm;最后根据分析结果提出实现陀螺快启动的波长补偿方案。  相似文献   

10.
为了拓宽1 550nm InGaAlAs超辐射发光二极管(SLD)的输出光谱,采用三量子阱结构(分别对应1 530、1 550、1 570nm中心激射波长)作为有源区制作了1 550nm SLD,并在器件非出射端部分制作成非注入吸收区,通过吸收区抑制激射。实验结果表明研制的SLD最大输出功率为26.1mW时,中心波长为1 567nm。最大光谱半高宽(FWHM)大于44nm。此外,器件即使在最大输出功率下,仍然具有较宽的光谱。  相似文献   

11.
We report the design and fabrication of a novel 1.55-m spot-size converter superluminescent diode (SLD) for optical access networks. The active section of SLD was fabricated by using a planar buried heterostructure to adopt the double-waveguide-core structure for low-threshold and high-output power operation at a low injection current. A ridge-based passive waveguide was employed for an efficient coupling to a planar lightwave circuit. The threshold current was as low as 14 mA, and the maximum output power was as high as 28 mW with ripple less than 3 dB at an injection current of 200 mA.  相似文献   

12.
Performance and reliability of InGaAsP superluminescent diode   总被引:2,自引:0,他引:2  
The performance and reliability of a 1.3-μm superluminescent diode (SLD) with a novel structure are reported. A window structure with a tapered active layer is applied to suppress lasing oscillation. A V-groove structure is introduced to achieve high coupling efficiency into a single-mode fiber. The design of optimized device dimensions allows SLD operation to be obtained even at 0°C. 1.3 mW is coupled into a single-mode fiber at 150 mA and 25°C. The spectral modulation depth is 15% over the entire emission spectral width of 32 nm. The operating life of a SLD has been estimated from the results of accelerated aging carried out for 5000 h at the ambient temperatures of 50 and 125°C. The activation energy of degradation is estimated to be 0.58 eV, and the extrapolated life is 106 h at an ambient temperature of 25°C  相似文献   

13.
一种大功率低偏振度量子阱超辐射发光二极管   总被引:1,自引:0,他引:1  
刘科  宋爱民  田坤  廖柯 《半导体光电》2013,34(6):949-953
设计了一种张应变与压应变相结合的混合应变量子阱结构超辐射发光二极管,研究了TE模和TM模在器件中的模式增益,分析了影响增益偏振性的因素,在此基础上通过改变有源层量子阱的应变类型、应变量以及层数来达到高增益和偏振不敏感性。最后按设计工艺流程生长了芯片,实验结果表明,所设计的SLD芯片单管输出功率在100mA驱动电流下可达3.5mW,出射光谱FWHM约为40nm,20nm波长范围内偏振度为0.3dB,具有较理想的大功率、宽光谱、低偏振度特性。  相似文献   

14.
Semiconductor Optical Amplifiers (SOAs) can beused asin-line amplifier ,preamplifier ,optical switch,andwavelength converter in future optical systems[1-3].Po-larization-independent gain,high output power and lowgain ripple are desirable features for most…  相似文献   

15.
A surface emitting laser diode (SELD) with two distributed Bragg reflectors (DBR) and semiconductor multilayer air-bridge-supported top mirror is fabricated. A low threshold current of 1.5 mA is achieved under room temperature CW operation. The spectrum shows a strong peak at 891 nm with a FWHM of 10 AA. With light emission from the top Bragg reflector instead of from the back side of the substrate, laser arrays are easily formed with this novel structure.<>  相似文献   

16.
渐变应变偏振不灵敏半导体光学放大器   总被引:1,自引:0,他引:1  
张瑞英  董杰  冯志伟  周帆  王鲁峰  王圩 《半导体学报》2002,23(10):1102-1105
采用渐变应变有源区结构,制备出偏振不灵敏半导体光学放大器,工作电流在60~160mA范围内,其3dB带宽范围不小于35nm,偏振不灵敏度小于0.35dB,自发发射出光功率为0.18~3.9mW.  相似文献   

17.
Semiconductor microlasers with an equilateral triangle resonator (ETR) are analyzed by rate equations with the mode lifetimes calculated by the finite-difference time-domain technique and the Pade approximation. A gain spectrum based on the relation of the gain spectrum and the spontaneous emission spectrum is proposed for considering the mode selection in a wide wavelength span. For an ETR microlaser with a side length of about 5 μm, we find that single fundamental mode operation at about 1.55 μm can be obtained as the side length increases from 4.75 to 5.05 μm. The corresponding wavelength tuning range is 93 nm, and the threshold current is about 0.1 to 0.4 mA  相似文献   

18.
Under an optical nonreturn-to-zero (NRZ) data injection at 10 Gbit/s, the 10-GHz mode-locking and pulsed return-to-zero (RZ) clock extraction from a semiconductor optical amplifier (SOA) based fiber ring is investigated in this paper. The diagnoses on gain and intracavity-power-controlled anomalous blueshifted spectrum and subpicosecond timing jitter are demonstrated. By increasing the injecting power of the optical NRZ data from ${-}3$ to 8 dBm into the SOA bias at different currents, the mode locking is completed with a dc level greatly decreasing from 480 to 50 $mu$ W (only 1.5% of the mode-locked pulse power at 3 mW), corresponding to a pulse/dc amplitude contrast ratio up to 18 dB. Increasing the SOA bias current up to 350 mA significantly suppresses the timing jitter from 1.8 ps to 345 fs, and the extracted RZ clock pulse is shortened from 55 to 27 ps. The pulsewidth of the amplified SOAFL is compressed from 11 ps to 836 fs after dispersion compensation. At constant data injection level, the increasing SOA bias or gain oppositely redshifts the mode-locked SOA fiber ring laser (SOAFL) spectrum by 5 nm. The amplifier spontaneous emission of SOA at short wavelength region (${sim} {hbox {1520}}$ nm) is eliminated with increasing NRZ data power, whereas the mode-locking gain peak arises and blueshifts from 1558 to 1552 nm due to the band-filling effect. Such a blueshift in mode-locking spectrum becomes more significant in SOA at lower bias (or gain) condition. A theoretical model interprets the correlation between the nonlinear gain suppression-induced variation of electron–hole plasma in SOA and the blueshifted mode-locking SOAFL spectrum, which is occurred when the gain saturation condition for the SOA becomes more pronounced.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号