首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Wire‐shaped electrodes for solid‐state cable‐type supercapacitors (SSCTS) with high device capacitance and ultrahigh rate capability are prepared by depositing poly(3,4‐ethylenedioxythiophene) onto self‐doped TiO2 nanotubes (D‐TiO2) aligned on Ti wire via a well‐controlled electrochemical process. The large surface area, short ion diffusion path, and high electrical conductivity of these rationally engineered electrodes all contribute to the energy storage performance of SSCTS. The cyclic voltammetric studies show the good energy storage ability of the SSCTS even at an ultrahigh scan rate of 1000 V s?1, which reveals the excellent instantaneous power characteristics of the device. The capacitance of 1.1 V SSCTS obtained from the charge–discharge measurements is 208.36 µF cm?1 at a discharge current of 100 µA cm?1 and 152.36 µF cm?1 at a discharge current of 2000 µA cm?1, respectively, indicating the ultrahigh rate capability. Furthermore, the SSCTS shows superior cyclic stability during long‐term (20 000 cycles) cycling, and also maintains excellent performance when it is subjected to bending and succeeding straightening process.  相似文献   

2.
The demand for a new generation of flexible, portable, and high‐capacity power sources increases rapidly with the development of advanced wearable electronic devices. Here we report a simple process for large‐scale fabrication of self‐standing composite film electrodes composed of NiCo2O4@carbon nanotube (CNT) for supercapacitors. Among all composite electrodes prepared, the one fired in air displays the best electrochemical behavior, achieving a specific capacitance of 1,590 F g?1 at 0.5 A g?1 while maintaining excellent stability. The NiCo2O4@CNT/CNT film electrodes are fabricated via stacking NiCo2O4@CNT and CNT alternately through vacuum filtration. Lightweight, flexible, and self‐standing film electrodes (≈24.3 µm thick) exhibit high volumetric capacitance of 873 F cm?3 (with an areal mass of 2.5 mg cm?2) at 0.5 A g?1. An all‐solid‐state asymmetric supercapacitor consists of a composite film electrode and a treated carbon cloth electrode has not only high energy density (≈27.6 Wh kg?1) at 0.55 kW kg?1 (including the weight of the two electrodes) but also excellent cycling stability (retaining ≈95% of the initial capacitance after 5000 cycles), demonstrating the potential for practical application in wearable devices.  相似文献   

3.
Oriented microstructures are widely found in various biological systems for multiple functions. Such anisotropic structures provide low tortuosity and sufficient surface area, desirable for the design of high‐performance energy storage devices. Despite significant efforts to develop supercapacitors with aligned morphology, challenges remain due to the predefined pore sizes, limited mechanical flexibility, and low mass loading. Herein, a wood‐inspired flexible all‐solid‐state hydrogel supercapacitor is demonstrated by morphologically tuning the aligned hydrogel matrix toward high electrode‐materials loading and high areal capacitance. The highly aligned matrix exhibits broad morphological tunability (47–12 µm), mechanical flexibility (0°–180° bending), and uniform polypyrrole loading up to 7 mm thick matrix. After being assembled into a solid‐state supercapacitor, the areal capacitance reaches 831 mF cm?2 for the 12 µm matrix, which is 259% times of the 47 µm matrix and 403% times of nonaligned matrix. The supercapacitor also exhibits a high energy density of 73.8 µWh cm?2, power density of 4960 µW cm?2, capacitance retention of 86.5% after 1000 cycles, and bending stability of 95% after 5000 cycles. The principle to structurally design the oriented matrices for high electrode material loading opens up the possibility for advanced energy storage applications.  相似文献   

4.
Silicon‐based materials have shown great potential and been widely studied in various fields. Unlike its unparalleled theoretical capacity as anodes for batteries, few investigations have been reported on silicon‐based materials for applications in supercapacitors. Here, an electrode composed of layered silicon‐based nanosheets, obtained through oxidation and exfoliation, for a supercapacitor operated up to 4 V is reported. These silicon‐based nanosheets show an areal specific capacitance of 4.43 mF cm?2 at 10 mV s?1 while still retaining a specific capacitance of 834 µF cm?2 even at an ultrahigh scan rate of 50 000 mV s?1. The volumetric energy and power density of the supercapacitor are 7.65 mWh cm?3 and 9312 mW cm?3, respectively, and the electrode can operate for 12000 cycles in a potential window of 4 V at 2 A g?1, while retaining 90.6% capacitance. These results indicate that the silicon‐based nanosheets can be a competitive candidate as the supercapacitor electrode material.  相似文献   

5.
Limited by 2D geometric morphology and low bulk packing density, developing graphene‐based flexible/compressible supercapacitors with high specific capacitances (gravimetric/volumetric/areal), especially at high rates, is an outstanding challenge. Here, a strategy for the synthesis of free‐standing graphene ribbon films (GRFs) for high‐performance flexible and compressible supercapacitors through blade‐coating of interconnected graphene oxide ribbons and a subsequent thermal treatment process is reported. With an ultrahigh mass loading of 21 mg cm?2, large ion‐accessible surface area, efficient electron and ion transport pathways as well as high packing density, the compressed multilayer‐folded GRF films (F‐GRF) exhibit ultrahigh areal capacitance of 6.7 F cm?2 at 5 mA cm?2, high gravimetric/volumetric capacitances (318 F g?1, 293 F cm?3), and high rate performance (3.9 F cm?2 at 105 mA cm?2), as well as excellent cycling stability (109% of capacitance retention after 40 000 cycles). Furthermore, the assembled F‐GRF symmetric supercapacitor with compressible and flexible characteristics, can deliver an ultrahigh areal energy density of 0.52 mWh cm?2 in aqueous electrolyte, almost two times higher than the values obtained from symmetric supercapacitors with comparable dimensions.  相似文献   

6.
Rapid growth of electronic textile increases the demand for textile‐based power sources, which should have comparable lightweight, flexibility, and comfort. In this work, a self‐charging power textile interwoven by all‐yarn‐based energy‐harvesting triboelectric nanogenerators (TENG) and energy‐storing yarn‐type asymmetric supercapacitors (Y‐ASC) is reported. Common polyester yarns with conformal Ni/Cu coating are utilized as 1D current collectors in Y‐ASCs and electrodes in TENGs. The solid‐state Y‐ASC achieves high areal energy density (≈78.1 µWh cm?2), high power density (14 mW cm?2), stable cycling performance (82.7% for 5000 cycles), and excellent flexibility (1000 cycles bending for 180°). The TENG yarn can be woven into common fabrics with desired stylish designs to harvest energy from human daily motions at high output (≈60 V open‐circuit voltage and ≈3 µA short‐circuit current). The integrated self‐charging power textile is demonstrated to power an electronic watch without extra recharging by other power sources, suggesting its promising applications in electronic textiles and wearable electronics.  相似文献   

7.
The areal energy density of on‐chip micro‐supercapacitors should be improved in order to obtain autonomous smart miniaturized sensors. To reach this goal, high surface capacitance electrode (>100 mF cm?2) has to be produced while keeping low the footprint area. For carbide‐derived carbon (CDC) micro‐supercapacitors, the properties of the metal carbide precursor have to be fine‐tuned to fabricate thick electrodes. The ad‐atoms diffusion process and atomic peening effect occurring during the titanium carbide sputtering process are shown to be the key parameters to produce low stress, highly conductive, and thick TiC films. The sputtered TiC at 10?3 mbar exhibits a high stress level, limiting the thickness of the TiC‐CDC electrode to 1.5 µm with an areal capacitance that is less than 55 mF cm?2 in aqueous electrolyte. The pressure increase up to 10?2 mbar induces a clear reduction of the stress level while the layer thickness increases without any degradation of the TiC electronic conductivity. The volumetric capacitance of the TiC‐CDC electrodes is equal to 350 F cm?3 regardless of the level of pressure. High values of areal capacitance (>100 mF cm?2) are achieved, whereas the TiC layer is relatively thick, which paves the way toward high‐performance micro‐supercapacitors.  相似文献   

8.
The miniaturization of energy storage units is pivotal for the development of next‐generation portable electronic devices. Micro‐supercapacitors (MSCs) hold great potential to work as on‐chip micro‐power sources and energy storage units complementing batteries and energy harvester systems. Scalable production of supercapacitor materials with cost‐effective and high‐throughput processing methods is crucial for the widespread application of MSCs. Here, wet‐jet milling exfoliation of graphite is reported to scale up the production of graphene as a supercapacitor material. The formulation of aqueous/alcohol‐based graphene inks allows metal‐free, flexible MSCs to be screen‐printed. These MSCs exhibit areal capacitance (Careal) values up to 1.324 mF cm?2 (5.296 mF cm?2 for a single electrode), corresponding to an outstanding volumetric capacitance (Cvol) of 0.490 F cm?3 (1.961 F cm?3 for a single electrode). The screen‐printed MSCs can operate up to a power density above 20 mW cm?2 at an energy density of 0.064 µWh cm?2. The devices exhibit excellent cycling stability over charge–discharge cycling (10 000 cycles), bending cycling (100 cycles at a bending radius of 1 cm) and folding (up to angles of 180°). Moreover, ethylene vinyl acetate‐encapsulated MSCs retain their electrochemical properties after a home‐laundry cycle, providing waterproof and washable properties for prospective application in wearable electronics.  相似文献   

9.
Fiber‐shaped micro‐supercapacitors (micro‐SCs) have attracted enormous interest in wearable electronics due to high flexibility and weavability. However, they usually present a low energy density because of inhomogeneity and less pores. Here, we demonstrate a microfluidic‐directed strategy to synthesize homogeneous nitrogen‐doped porous graphene fibers. The porous fibers‐based micro‐SCs utilize solid‐state phosphoric acid/polyvinyl alcohol (H3PO4/PVA) and 1‐ethyl‐3‐methylimidazolium tetrafluoroborate/poly(vinylidenefluoride‐co‐hexafluoropropylene) (EMIBF4/PVDF‐HFP) electrolytes, which show significant improvements in electrochemical performances. Ultralarge capacitance (1132 mF cm?2), high cycling‐stability, and long‐term bending‐durability are achieved based on H3PO4/PVA. Additionally, high energy densities of 95.7–46.9 µWh cm?2 at power densities of 1.5–15 W cm?2 are obtained in EMIBF4/PVDF‐HFP. The key to higher performances stems from microfluidic‐controlled fibers with a uniformly porous network, large specific surface area (388.6 m2 g?1), optimal pyridinic nitrogen (2.44%), and high electric conductivity (30785 S m?1) for faster ion diffusion and flooding accommodation. By taking advantage of these remarkable merits, this study integrates micro‐SCs into flexible and fabric substrates to power audio–visual electronics. The main aim is to clarify the important role of microfluidic techniques toward the architecture of electrodes and promote development of wearable electronics.  相似文献   

10.
Lithium‐ion batteries have undergone a remarkable development in the past 30 years. However, conventional electrodes are insufficient for the ever‐increasing demand of high‐energy batteries. Here, reported is a thick electrode with a dense structure, as an alternative to the commonly recognized porous framework. A low‐temperature sintering technology with the aid of aqueous solvent, high pressure, and an ion‐conductive additive is originally developed for preparing the LiCoO2 (LCO)/Li4Ti5O12 (LTO) dense‐structure electrode as the representative cathode/anode material. The 400 µm thick cathode with 110 mg cm?2 mass loading achieves a high specific capacity of 131.2 mAh g?1 with a good capacity retention of 96% over 150 cycles, far exceeding the commercial counterpart (≈40 µm) of 54.1 mAh g?1 with 39%. The ultrathick electrode of 1300 µm thickness presents a remarkable area capacity of 28.6 mAh cm?2 that is 16 times that of the commercial electrode. The full cell based on the dense electrodes delivers an extremely high areal capacity of 14.4 mAh cm?2. The ion‐diffusion coefficients of the densely sintered electrodes increase by nearly three orders of magnitude. This design opens up a new avenue for scalable and sustainable material manufacturing towards various practical applications.  相似文献   

11.
Oxygen‐deficient bismuth oxide (r‐Bi2O3)/graphene (GN) is designed, fabricated, and demonstrated via a facile solvothermal and subsequent solution reduction method. The ultrafine network bacterial cellulose (BC) as substrate for r‐Bi2O3/GN exhibits high flexibility, remarkable tensile strength (55.1 MPa), and large mass loading of 9.8 mg cm?2. The flexible r‐Bi2O3/GN/BC anode delivers appreciable areal capacitance (6675 mF cm?2 at 1 mA cm?2) coupled with good rate capability (3750 mF cm?2 at 50 mA cm?2). In addition, oxygen vacancies have great influence on the capacitive performance of Bi2O3, delivering significantly improved capacitive values than the untreated Bi2O3 flexible electrode, and ultrahigh gravimetric capacitance of 1137 F g?1 (based on the mass of r‐Bi2O3) can be obtained, achieving 83% of the theoretical value (1370 F g?1). Flexible asymmetric supercapacitor is fabricated with r‐Bi2O3/GN/BC and Co3O4/GN/BC paper as the negative and positive electrodes, respectively. The operation voltage is expanded to 1.6 V, revealing a maximum areal energy density of 0.449 mWh cm?2 (7.74 mWh cm?3) and an areal power density of 40 mW cm?2 (690 mW cm?3). Therefore, this flexible anode with excellent electrochemical performance and high mechanical properties shows great potential in the field of flexible energy storage devices.  相似文献   

12.
One of the critical challenges to develop advanced lithium‐sulfur (Li‐S) batteries lies in exploring a high efficient stable sulfur cathode with robust conductive framework and high sulfur loading. Herein, a 3D flexible multifunctional hybrid is rationally constructed consisting of nitrogen‐doped carbon foam@CNTs decorated with ultrafine MgO nanoparticles for the use as advanced current collector. The dense carbon nanotubes uniformly wrapped on the carbon foam skeletons enhance the flexibility and build an interconnected conductive network for rapid ionic/electronic transport. In particular, a synergistic action of MgO nanoparticles and in situ N‐doping significantly suppresses the shuttling effect via enhanced chemisorption of lithium polysulfides. Owing to these merits, the as‐built electrode with an ultrahigh sulfur loading of 14.4 mg cm?2 manifests a high initial areal capacity of 10.4 mAh cm?2, still retains 8.8 mAh cm?2 (612 mAh g?1 in gravimetric capacity) over 50 cycles. The best cycling performance is achieved upon 800 cycles with an extremely low decay rate of 0.06% at 2 C. Furthermore, a flexible soft‐packaged Li‐S battery is readily assembled, which highlights stable electrochemical characteristics under bending and even folding. This cathode structural design may open up a potential avenue for practical application of high‐sulfur‐loading Li‐S batteries toward flexible energy‐storage devices.  相似文献   

13.
The rational combination of conductive nanocarbon with sulfur leads to the formation of composite cathodes that can take full advantage of each building block; this is an effective way to construct cathode materials for lithium–sulfur (Li–S) batteries with high energy density. Generally, the areal sulfur‐loading amount is less than 2.0 mg cm?2, resulting in a low areal capacity far below the acceptable value for practical applications. In this contribution, a hierarchical free‐standing carbon nanotube (CNT)‐S paper electrode with an ultrahigh sulfur‐loading of 6.3 mg cm?2 is fabricated using a facile bottom–up strategy. In the CNT–S paper electrode, short multi‐walled CNTs are employed as the short‐range electrical conductive framework for sulfur accommodation, while the super‐long CNTs serve as both the long‐range conductive network and the intercrossed mechanical scaffold. An initial discharge capacity of 6.2 mA·h cm?2 (995 mA·h g?1), a 60% utilization of sulfur, and a slow cyclic fading rate of 0.20%/cycle within the initial 150 cycles at a low current density of 0.05 C are achieved. The areal capacity can be further increased to 15.1 mA·h cm?2 by stacking three CNT–S paper electrodes—resulting in an areal sulfur‐loading of 17.3 mg cm?2—for the cathode of a Li–S cell. The as‐obtained free‐standing paper electrode are of low cost and provide high energy density, making them promising for flexible electronic devices based on Li–S batteries.  相似文献   

14.
A hierarchical structure consisting of Ni–Co hydroxide nanopetals (NCHPs) grown on a thin free‐standing graphene petal foam (GPF) has been designed and fabricated by a two‐step process for pseudocapacitive electrode applications. The mechanical behavior of GPFs has been, for the first time to our knowledge, quantitatively measured from in situ scanning electron microscope characterization of the petal foams during in‐plane compression and bending processes. The Young's modulus of a typical GPF is 3.42 GPa, indicating its outstanding mechanical robustness as a nanotemplate. The GPF/NCHP electrodes exhibit volumetric capacitances as high as 765 F cm?3, equivalent to an areal capacitance of 15.3 F cm?2 and high rate capability. To assess practical functionality, two‐terminal asymmetric solid‐state supercapacitors with 3D GPF/NCHPs as positive electrodes are fabricated and shown to exhibit outstanding energy and power densities, with maximum average energy density of ≈10 mWh cm?3 and maximum power density of ≈3 W cm?3, high rate capability (a capacitance retention of ≈60% at 100 mA cm?2), and excellent long‐term cyclic stability (full capacitance retention over 15 000 cycles).  相似文献   

15.
Cellulose paper (CP)‐based asymmetrical thin film supercapacitors (ATFSCs) have been considered to be a novel platform for inexpensive and portable devices as the CP is low‐cost, lightweight, and can be rolled or folded into 3D configurations. However, the low energy density and poor cycle stability are serious bottlenecks for the development of CP‐based ATFSCs. Here, sandwich‐structured graphite/Ni/Co2NiO4‐CP is developed as positive electrode and the graphite/Ni/AC‐CP as negative electrode for flexible and high‐performance ATFSCs. The fabricated graphite/Ni/Co2NiO4‐CP positive electrode shows a superior areal capacitance (734 mF/cm2 at 5 mV/s) and excellent cycling performance with ≈97.6% Csp retention after 15 000 cycles. The fabricated graphite/Ni/AC‐CP negative electrode also exhibits large areal capacitance (180 mF/cm2 at 5 mV/s) and excellent cycling performance with ≈98% Csp retention after 15 000 cycles. The assembled ATFSCs based on the sandwich‐structured graphite/Ni/Co2NiO4‐CP as positive electrode and graphite/Ni/AC‐CP as negative electrode exhibit large volumetric Csp (7.6 F/cm3 at 5 mV/s), high volumetric energy density (2.48 mWh/cm3, 80 Wh/kg), high volumetric power density (0.79 W/cm3, 25.6 kW/kg) and excellent cycle stability (less 4% Csp loss after 20 000 cycles). This study shows an important breakthrough in the design and fabrication of high‐performance and flexible CP‐based electrodes and ATFSCs.  相似文献   

16.
The emergence of flexible and wearable electronic devices with shape amenability and high mobility has stimulated the development of flexible power sources to bring revolutionary changes to daily lives. The conventional rechargeable batteries with fixed geometries and sizes have limited their functionalities in wearable applications. The first‐ever graphene‐based fibrous rechargeable batteries are reported in this work. Ultralight composite fibers consisting of reduced graphene oxide/carbon nanotube filled with a large amount of sulfur (rGO/CNT/S) are prepared by a facile, one‐pot wet‐spinning method. The liquid crystalline behavior of high concentration GO sheets facilitates the alignment of rGO/CNT/S composites, enabling rational assembly into flexible and conductive fibers as lithium–sulfur battery electrodes. The ultralight fiber electrodes with scalable linear densities ranging from 0.028 to 0.13 mg cm?1 deliver a high initial capacity of 1255 mAh g?1 and an areal capacity of 2.49 mAh cm?2 at C /20. A shape‐conformable cable battery prototype demonstrates a stable discharge characteristic after 30 bending cycles.  相似文献   

17.
3D thick electrode design is a promising strategy to increase the energy density of lithium‐ion batteries but faces challenges such as poor rate and limited cycle life. Herein, a coassembly method is employed to construct low‐tortuosity, mechanically robust 3D thick electrodes. LiFe0.7Mn0.3PO4 nanoplates (LFMP NPs) and graphene are aligned along the growth direction of ice crystals during freezing and assembled into sandwich frameworks with vertical channels, which prompts fast ion transfer within the entire electrode and reveals a 2.5‐fold increase in ion transfer performance as opposed to that of random structured electrodes. In the sandwich framework, LFMP NPs are entrapped in the graphene wall in a “plate‐on‐sheet” contact mode, which avoids the detachment of NPs during cycling and also constitutes electron transfer highways for the thick electrode. Such vertical‐channel sandwich electrodes with mass loading of 21.2 mg cm?2 exhibit a superior rate capability (0.2C–20C) and ultralong cycle life (1000 cycles). Even under an ultrahigh mass loading of 72 mg cm?2, the electrode still delivers an areal capacity up to 9.4 mAh cm?2, ≈2.4 times higher than that of conventional electrodes. This study provides a novel strategy for designing thick electrodes toward high performance batteries.  相似文献   

18.
Highly flexible supercapacitors (SCs) have great potential in modern electronics such as wearable and portable devices. However, ultralow specific capacity and low operating potential window limit their practical applications. Herein, a new strategy for the fabrication of free‐standing Ni?Mo?S and Ni?Fe?S nanosheets (NSs) for high‐performance flexible asymmetric SC (ASC) through hydrothermal and subsequent sulfurization technique is reported. The effect of Ni2+ is optimized to attain hierarchical Ni?Mo?S and Ni?Fe?S NS architectures with high electrical conductivity, large surface area, and exclusive porous networks. Electrochemical properties of Ni?Mo?S and Ni?Fe?S NS electrodes exhibit that both have ultrahigh specific capacities (≈312 and 246 mAh g?1 at 1 mA cm?2), exceptional rate capabilities (78.85% and 78.46% capacity retention even at 50 mA cm?2, respectively), and superior cycling stabilities. Most importantly, a flexible Ni?Mo?S NS//Ni?Fe?S NS ASC delivers a high volumetric capacity of ≈1.9 mAh cm?3, excellent energy density of ≈82.13 Wh kg?1 at 0.561 kW kg?1, exceptional power density (≈13.103 kW kg?1 at 61.51 Wh kg?1) and an outstanding cycling stability, retaining ≈95.86% of initial capacity after 10 000 cycles. This study emphasizes the potential importance of compositional tunability of the NS architecture as a novel strategy for enhancing the charge storage properties of active electrodes.  相似文献   

19.
2D MXene materials are of considerable interest for future energy storage. A MXene film could be used as an effective flexible supercapacitor electrode due to its flexibility and, more importantly, its high specific capacitance. However, although it has excellent electronic conductivity, sluggish ionic kinetics within the MXene film becomes a fundamental limitation to the electrochemical performance. To compensate for the relative deficiency, MXene films are frequently reduced to several micrometer dimensions with low mass loading (<1 mg cm?2), to the point of detriment of areal performance and commercial value. Herein, for the first time, the design of a 3D porous MXene/bacterial cellulose (BC) self‐supporting film is reported for ultrahigh capacitance performance (416 F g?1, 2084 mF cm?2) with outstanding mechanical properties and high flexibility, even when the MXene loading reaches 5 mg cm?2. The highly interconnected MXene/BC network enables both excellent electron and ion transport channel. Additionally, a maximum energy density of 252 µWh cm?2 is achieved in an asymmetric supercapacitor, higher than that of all ever‐reported MXene‐based supercapacitors. This work exploits a simple route for assembling 2D MXene materials into 3D porous films as state‐of‐the‐art electrodes for high performance energy storage devices.  相似文献   

20.
2D conjugated metal‐organic frameworks (2D c‐MOFs) are emerging as a novel class of conductive redox‐active materials for electrochemical energy storage. However, developing 2D c‐MOFs as flexible thin‐film electrodes have been largely limited, due to the lack of capability of solution‐processing and integration into nanodevices arising from the rigid powder samples by solvothermal synthesis. Here, the synthesis of phthalocyanine‐based 2D c‐MOF (Ni2[CuPc(NH)8]) nanosheets through ball milling mechanical exfoliation method are reported. The nanosheets feature with average lateral size of ≈160 nm and mean thickness of ≈7 nm (≈10 layers), and exhibit high crystallinity and chemical stability as well as a p‐type semiconducting behavior with mobility of ≈1.5 cm2 V?1 s?1 at room temperature. Benefiting from the ultrathin feature, the nanosheets allow high utilization of active sites and facile solution‐processability. Thus, micro‐supercapacitor (MSC) devices are fabricated mixing Ni2[CuPc(NH)8] nanosheets with exfoliated graphene, which display outstanding cycling stability and a high areal capacitance up to 18.9 mF cm?2; the performance surpasses most of the reported conducting polymers‐based and 2D materials‐based MSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号