首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
这是一篇工艺矿物学领域的论文。为查清某伴生钪的低品位钛矿矿石性质,采用化学分析、电子探针、X射线衍射、AMICS矿物自动分析仪和光学显微镜等手段,对矿石的物质组成、矿物嵌布特征以及钪、铁、钛元素的赋存状态进行了详细的工艺矿物学研究。结果表明:矿石中钪主要赋存于钙镁硅酸盐中,分布率达94.93%,仅针对钙镁硅酸盐类矿物进行选冶工作即可取得优异的钪回收指标。研究结果对钛矿石伴生钪的选冶及矿床下一步开发利用具有重要指导意义,也对类似含钪钛矿床中钪的赋存状态研究具有重要启示。  相似文献   

2.
水厂铁矿磁铁矿矿石工艺矿物学研究   总被引:2,自引:0,他引:2  
冀东水厂铁矿石铁品位为32.27%,以磁铁矿形式存在的铁占总铁的91.72,以硅酸铁和碳酸铁形式存在的铁分别占总铁的5.30%、2.49%,脉石矿物主要为石英、辉石和角闪石。为给该矿石的开发利用提供依据,对其进行了工艺矿物学研究。结果显示:矿石结构以粒状变晶结构为主,少数呈似海绵陨铁结构和压碎结构;矿石构造以条纹状和条带状构造为主,片麻状构造和块状构造相对少见;矿石中磁铁矿嵌布类型多样,多数呈半自形-他形粒状、聚粒状嵌布于石英、辉石、角闪石等脉石矿物中;磁铁矿嵌布粒度极不均匀,在+0.64 mm粒级分布率为8.42%,在-0.08 mm粒级分布率为38.90%,在-0.04 mm粒级分布率为22.14%。因此该铁矿石的选别适宜采用阶段磨矿阶段选别工艺。  相似文献   

3.
白云鄂博铁矿石工艺矿物学研究   总被引:1,自引:0,他引:1  
陈杏婕  倪文  范敦城  李瑾 《金属矿山》2015,44(5):109-113
为了更好地开发利用白云鄂博铁矿石资源,对白云鄂博铁矿石进行了工艺矿物学研究。结果表明:①矿石中的有用矿物主要为磁铁矿、赤铁矿、稀土矿物,脉石矿物主要有萤石、石英、钠辉石、方解石、长石等。②矿石中的主要铁矿物为磁铁矿,以碎屑状及角砾状为主,占磁铁矿总量的70%以上,与钶铁矿、磷灰石、独居石、重晶石等紧密共生,偶见粗粒块状磁铁矿集合体;矿石中的赤铁矿多紧密镶嵌在碎屑状及角砾状磁铁矿中构成铁矿物集合体。③独居石是矿石中分布最广的稀土矿物,呈粒状,与周边其他矿物紧密共生、镶嵌关系复杂。④矿石中的脉石矿物均呈不规则状或他形粒状,脉石矿物间以及脉石矿物与有用矿物间嵌布关系均非常密切,萤石是分布最广的脉石矿物,是细小稀土矿物颗粒的包裹矿物之一。⑤矿石中铁矿物的嵌布粒度均非常细小,磁铁矿较赤铁矿略粗,嵌布粒度大于10 μm的赤铁矿、磁铁矿分别仅占40%和54%。⑥由于矿石中各矿物的嵌布关系复杂,嵌布粒度微细,单体解离困难,因此,宜采用深度还原工艺使微细粒铁矿物聚集长大后再进行回收。  相似文献   

4.
马驰  卫敏  卞孝东  王守敬 《金属矿山》2016,45(3):103-106
为配合山东某大型岩浆分异型钛铁矿资源的开发,对有代表性矿石进行了工艺矿物学研究。结果表明:①该钛铁矿中主要有用金属矿物为钛铁矿和磁铁矿,次要含钛矿物为榍石;脉石矿物主要是角闪石和辉石。②矿石中粗粒钛铁矿多与磁铁矿和榍石紧密共生,三者集合体的粒度主要集中在0.5~0.1 mm,细粒、微细粒钛铁矿和榍石呈固溶体分离结构多分布在辉石、角闪石和黑云母中,一般粒度小于0.004 mm。③矿石中角闪石、辉石等含钛矿物和钛铁矿、榍石极微细粒呈出熔结构产出将造成TiO2回收率较低。④多达54.42%的铁赋存在硅酸盐、碳酸盐和金属硫化物中将造成铁回收率较低。因此,该矿石属难选钛铁矿石。  相似文献   

5.
司家营铁矿矿石工艺矿物学及选矿影响因素研究   总被引:1,自引:0,他引:1  
对司家营铁矿矿石的化学成分、矿物组成、嵌布特征、粒度及结构构造等工艺矿物学特征进行了详细的研究。结果显示,矿石可利用组分主要为Fe;铁矿物主要由赤(褐)铁矿和少量磁铁矿组成;脉石矿物主要为石英和云母,其次为角闪石、绿泥石;铁矿物平均嵌布粒度为0.116 mm;铁矿物与脉石矿物的关系主要为毗连和镶嵌结构。结合矿石化学分析和镜下鉴定结果,证实闪石类矿物与磁性铁有着密切关系。根据矿石工艺矿物学研究结果,该区域矿石可划分为易解离易选、易解离难选、难解离难选等3种工艺类型,并分析了每种类型矿石的特征及选矿影响因素。  相似文献   

6.
为了回收陕西某难选原生钒钛磁铁矿石中的钛铁矿资源,在对矿石进行工艺矿物学研究基础上,对干式中磁抛废后的矿石进行了强磁预选—反浮选脱硫—浮选选钛工艺试验。结果表明:1该矿石属含硫高磷低品位钒钛磁铁矿石,钛主要以钛铁矿形式存在,占总钛的67.66%,主要呈浸染状产出,常发生榍石化,沿钛磁铁矿边缘或粒间嵌布,少数零星出现在脉石中;硫主要以黄铁矿形式存在;脉石矿物主要为透辉石、绿泥石、角闪石、斜长石等硅酸盐矿物。2矿石经粗粒中磁干式抛废—弱磁选铁—强磁预选富集钛—反浮选脱硫—浮选提纯钛铁矿的工艺流程处理,实现了对难选钛铁矿的高效回收,最终获得铁品位为55.12%、含钛10.17%、铁回收率为44.20%的铁精矿,以及Ti O2品位为48.01%、回收率为51.84%的钛精矿。实现了钛铁矿与比磁化系数接近的铁硅酸盐矿物等的有效分离。  相似文献   

7.
为查明五峰鲕状赤铁矿的工艺矿物学性质,采用化学分析、X射线衍射、MLA、光学显微镜等技术手段,对矿石的化学成分、矿物组成、矿石结构构造及赤铁矿的嵌布粒度进行了系统研究。研究表明:该矿石为高磷鲕状赤铁矿石,矿石中的有用元素为铁,主要以赤铁矿、褐铁矿的形式存在,脉石矿物主要为石英、鲕绿泥石、方解石、胶磷矿。矿石主要以鲕粒结构为主,铁矿物的嵌布粒度极细,与脉石矿物的嵌布关系复杂,很难实现与脉石矿物的解离。  相似文献   

8.
为了查明广东东源某磁铁矿石的工艺矿物学特征,采用化学分析、MLA等技术手段对矿石的多元素含量、矿物组成以及磁铁矿的嵌布粒度进行了研究。结果表明,矿石中主要有用元素为铁,主要铁矿物为磁铁矿和硅酸铁,其次为磁黄铁矿、黄铁矿;磁铁矿的嵌布粒度微细,主要以微细粒浸染状分布在角闪石、绿泥石、橄榄石等脉石矿物中。需要细磨才能充分单体解离;矿石宜采用阶段磨选工艺处理。  相似文献   

9.
房启家  张强  孙永峰 《金属矿山》2022,51(4):131-137
为开发利用山东某低品位铁矿石,采用化学成分分析、铁物相分析、光学显微镜等方法对其进行工艺矿 物学研究。 结果表明,矿石 TFe 品位为 27. 18%,铁主要以磁铁矿形式存在,其次为硅酸铁;有害元素 S 和 P 含量较低; 主要脉石矿物为石英、角闪石和云母。 矿石结构主要有粒状结构、浸染状结构、交代结构等。 矿石主要有块状构造、层 状构造、条带状构造和网脉状构造。 磁铁矿主要呈自形、半自形粒状嵌布于脉石中,结晶粒度较细,-0. 07 mm 粒级分 布率为 65. 07%。 石英主要呈粒状集合体分布,结晶粒度较粗,+0. 07 mm 粒级分布率为 62. 33%;其他脉石矿物角闪 石、云母的结晶粒度也较粗,+0. 07 mm 粒级分布率为 67. 51%。 当一段磨矿-0. 076 mm 粒级含量为 85%时,磁铁矿的 解离度仅为 76. 25%,需进行二段磨矿。 基于矿石的工艺矿物学分析结果,结合当前低品位铁矿石选别技术的发展现 状,推荐选矿工艺流程为“常规破碎—干式磁选—高压辊磨—湿式磁选预选—两段阶段磨矿—弱磁选—磁选柱精 选—中矿再磨再选”。  相似文献   

10.
为制定合理的铜钼矿选矿工艺流程和选矿指标,采用光学显微镜、化学多元素分析、物相分析等分析测试手段对秘鲁某矽卡岩型难选铜钼矿进行了系统的工艺矿物学研究。研究结果表明,矿石主要有用元素为Cu和Mo,品位分别为0.58%和0.019%。矿石矿物组成复杂,主要有用矿物为黄铜矿、辉铜矿、辉钼矿等,脉石矿物为石英、长石、云母、蛇纹石、透闪石、绿泥石等。铜钼矿物嵌布粒度细小,且常沿黄铁矿或磁铁矿或脉石矿物的边缘、孔洞及裂隙分布,少量微细粒黄铜矿呈稀疏浸染状分布在脉石矿物中,嵌布关系复杂,影响铜钼矿的选矿回收。  相似文献   

11.
对云南某钛铁矿进行了工艺矿物学研究。结果表明: 矿石中钛品位为5.62%,主要有用金属矿物为钛铁矿和钒钛磁铁矿,分别占总钛的61.39%和11.03%。脉石矿物主要是斜长石和钛辉石,脉石矿物中主要成分为SiO2和Al2O3,其含量分别为42.35%和12.53%。矿样中粗粒钛铁矿多与钒钛磁铁矿和榍石及硅酸盐紧密共生,其集合体的粒度主要集中在 0.02~0.30 mm。赋存于榍石与硅酸盐矿物中的钛多达27.58%。探索性实验结果表明:弱磁-强磁选可以有效地回收矿石中的强磁性矿物,并抛出大量的脉石矿物,实现钛铁矿的富集。因此,该矿石属于低品位难选钛铁矿,实现钛铁矿物的有效回收对该资源的开发利用具有重要的实践意义。   相似文献   

12.
针对辽西风化壳型钒钛磁铁矿有用矿物难以回收利用的问题,进行了详细的工艺矿物学研究。矿石中金属矿物主要为磁铁矿、(钛)磁铁矿、钒磁铁矿、钛铁矿,非金属矿主要有长石、角闪石和石英。其中钛、钒主要以类质同象的形式赋存在磁铁矿中,且矿石中磁铁矿、钛铁矿及脉石矿物嵌布关系复杂,解离困难。分别采用直接磨矿-弱磁选预富集、粗粒干式预抛尾-磨矿-弱磁选预富集、粗粒湿式预抛尾-磨矿-弱磁选预富集工艺进行了预富集工艺对比试验。结果表明,粗粒湿式预抛尾-磨矿-弱磁选无论在功耗还是回收率指标方面均优于其余2种工艺。采用该工艺在磨矿细度为-0.074 mm占70%条件下,获得了V2O5含量为1.561%、回收率为60.96%,TFe品位为40.43%、回收率为24.83%的预富集精矿,可以满足后续直接酸浸提钒的工艺要求。对粗粒湿式预抛尾-磨矿-弱磁选工艺获得的精矿、尾矿进行分析检测表明,钒、钛以类质同象的形式替换磁铁矿中的铁,使预富集精矿铁品位较低,预富集精矿中磁铁矿、钛磁铁矿、脉石矿物嵌布关系复杂紧密,无法通过机械磨矿使其解离。因此,即使继续增加磨矿细度,预富集精矿全铁品位也仅能保持在40%左右,不能再继续提高。  相似文献   

13.
以吉林某高铁钾长石矿为研究对象,通过X射线衍射分析、电子探针分析、光学显微镜分等分析手段对钾长石矿样进行化学组成、矿物嵌布状态以及粒度组成等工艺矿物学研究。研究结果表明,该矿样中主要是钾长石、钠长石、石英,铁元素主要分布在赤铁矿、褐铁矿以及磁铁矿中。矿样中钾长石以针柱状的细粒产出,部分铁矿物嵌布在钾长石微晶基底、孔洞边缘或浸染在脉石矿物中,为复杂难处理钾长石矿。且-0.0385 mm矿样中Fe2O3含量达到2.36%,需要在后续处理中进行脱泥、磁选、浮选、酸洗作业才能使产品达到高端钾长石市场要求。   相似文献   

14.
为了实现钒钛磁铁矿尾矿中钛、铁等资源的二次综合利用,提高资源利用率,采用矿相显微镜、扫描电子显微镜和矿物自动解离系统(MLA)对某钒钛磁铁矿尾矿中铁和钛的赋存规律进行了详细研究,讨论了影响尾矿中钛、铁回收的矿物学因素。结果表明,该尾矿的颗粒较细,矿物主要包括钛铁矿、钛磁铁矿、黄铁矿等金属矿物和攀钛透辉石、斜长石和角闪石等脉石矿物组成;矿物中钛磁铁矿和钛铁矿除部分以单体解离态产出外,多呈形态各异的粒状沿脉石的粒间、边缘、裂隙及孔洞填充而构成较为复杂的镶嵌和包裹关系;铁、钛元素在目的矿物中的赋存比例分别为19.87%和51.62%;铁在钛铁矿、攀钛透辉石、角闪石中的赋存比例占78.85%,单体解离度为72.29%,TiO_2在钛铁矿、攀钛透辉石和角闪石的赋存比例占90.94%,单体解离度为71.43%,因此实现钛磁铁矿、钛磁铁矿和攀钛透辉石、角闪石的有效分离是提高铁、钛回收率的关键。  相似文献   

15.
某难选铷矿石选矿预富集试验   总被引:1,自引:0,他引:1  
我国西部某大型铷矿床资源储量约10万t,矿石中的铷呈分散状态赋存在钾长石及铁锂云母中,主要脉石矿物钠长石和石英不含铷。根据铁锂云母有弱磁性、钾长石的可浮性与石英相差较大的特点,以强磁选富集矿石中的含铷矿物铁锂云母、浮选富集矿石中的含铷矿物钾长石的磁浮联合流程进行了铷预富集试验。结果表明,Rb2O含量为0.13%的矿石在磨矿细度为-0.074 mm占65%的情况下,以PL为石英等硅酸盐矿物的强抑制剂、EZ+十二胺为长石类矿物的捕收剂,经1次强磁选,1粗1扫2精、中矿合并再选的浮选流程处理,获得了Rb2O品位为0.39%、回收率为69.91%的铷精矿。  相似文献   

16.
通过对矿石成分和结构构造、钛铁矿的产出形式和蚀变类型、钛铁矿的能谱微区成分和嵌布粒度等的分析,总结出影响钛铁矿选矿指标的主要矿物学特征,并对钛铁矿分选性能的影响因素进行了分析。最终查明矿石中钛的赋存状态较为分散,其中钛铁矿常零星散布在脉石中,部分沿钛磁铁矿边缘分布,且普遍沿表面、边缘、粒间及裂隙发生榍石化、金红石化及赤铁矿化,粒度较为细小。由于氧化作用的影响,部分钛铁矿与榍石镶嵌关系过于复杂将是影响钛精矿质量的主要原因;即使采用细磨工艺,矿石中的钛铁矿亦很难获得较充分的解离。研究成果为钛铁矿的选矿工艺研究提供了指导。  相似文献   

17.
为查明矿石性质对选矿指标的影响,对国外某高铁型铜硫矿采用光学显微镜、物相分析和化学多元素分析等分析测试手段,研究了矿石的矿物组成、主要矿物嵌布特征和主要元素赋存状态等工艺矿物学特征.工艺矿物学研究结果表明,Cu和S为矿石中主要目的元素,品位分别为0.78%和11.12%,伴生元素银品位为7.5 g/t,铜主要赋存于黄铜...  相似文献   

18.
为了探索内蒙某锌矿石的工艺矿物学特性,对该矿石开展了系统性的工艺矿物学分析,结果表明:该矿石中含锌8.25%,矿石中硫化锌中的锌占40.12%,碳酸锌中的锌占49.09%,硅酸锌中的锌占8.39%,其它部分锌含量为2.42%;矿石中的主要锌矿物有菱锌矿、闪锌矿(含铁闪锌矿)、异极矿;另有黄铁矿、磁黄铁矿、褐铁矿、赤铁矿、磁铁矿等铁矿物,方铅矿、白铅矿,铅硬锰矿等铅矿物,微量的黄铜矿和赤铜矿等铜矿物;脉石矿物主要由石英、方解石、重晶石、天青石和少量或微量的云母(绢云母、黑云母等)、长石(钾长石、钠长石、斜长石等)、粘土矿物、辉石、闪石、绿泥石等组成,为该矿石资源的开发提供了主要的参考依据。  相似文献   

19.
袁家村难选闪石型磁铁矿具有铁硅酸盐含量高、矿物组成复杂、矿物嵌布粒度极细的特点。在工艺矿物学研究的基础上,通过预选(早丢)和弱磁精矿反浮选或淘洗磁选在相对粗粒条件下获得大部分高品位铁精矿,达到降低磨矿成本的目的。最终得出了适合袁家村闪石型磁铁矿石的选矿工艺流程,采用-3 mm湿式预选-两段阶磨-四次弱磁选-反浮选-浮尾再磨弱磁选流程,可获得精矿产率29.42%、铁品位68.16%、回收率66.55%的指标。该工艺解决了袁家村闪石型磁铁矿经济开发利用的难题。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号