首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
对高硫铜锌矿采用粗磨后混合浮选具有回收率高成本低的优势,但混合粗精矿的铜-锌-硫分离一直是金属选矿重点和难点。本文针对云南思茅地区高硫铜锌矿,含Cu3.03%、Zn3 .90%、S 27.44%,采用“混合浮选-再磨脱硫-铜锌分离”工艺,研究了再磨细度、药剂用量等因素对混合浮选和铜-锌-硫分离的影响。混合浮选抛尾量为37.61%,混合粗精矿Cu回收率96.34%,Zn回收率98.37%,S回收率98.87%。当粗精矿再磨细度-38μm 90%时脱硫,获得硫铁精矿含S 45.74%,S回收率74.43%,铜锌分离闭路试验获得铜精矿含Cu 24.01%,Cu回收率86.76%,锌精矿含Zn52.30%,Zn回收率87.12%。表明对高硫铜锌矿采用 “混合浮选-再磨脱硫-铜锌分离”工艺可实现各矿物较彻底分离。  相似文献   

2.
对高硫铜锌矿采用粗磨后混合浮选流程,该流程具有回收率高、成本低的优势,但混合粗精矿的铜-锌-硫分离一直是金属选矿的重点和难点。针对云南思茅地区高硫铜锌矿,含Cu 3.03%、Zn 3.90%、S 27.44%,采用"全混浮—再磨脱硫—铜锌分离"工艺,研究了再磨细度、药剂用量等因素对混合浮选和铜-锌-硫分离的影响。混合浮选抛尾量为37.61%,混合粗精矿Cu回收率96.34%,Zn回收率98.37%,S回收率98.87%。当粗精矿再磨细度-38μm占90%时脱硫,获得硫铁精矿含S 45.74%,S回收率74.43%;铜锌分离闭路试验获得的铜精矿含Cu 24.01%,Cu回收率86.76%;锌精矿含Zn 52.30%,Zn回收率87.12%。结果表明对高硫铜锌矿采用全混浮—再磨脱硫—铜锌分离工艺可实现各矿物较彻底分离。  相似文献   

3.
铜锌硫化矿粗磨后混合浮选具有回收率高和成本低的优势,但混合精矿面临铜锌硫分离的难题。云南思茅地区的铜锌硫混合粗精矿,其细度为-74μm含量75%;Cu,2.56%;Zn,5.23%;S,37.21%。采用混合粗精矿再磨-分步降硫-铜锌分离工艺,研究了再磨细度、药剂用量等因素对铜、锌矿物和硫矿物分离效果的影响。当粗精矿再磨细度为-38μm含量90%时,闭路试验获得品位和回收率均较高的铜精矿、锌精矿和硫精矿产品,铜精矿含Cu 20.42%,Cu回收率82.47%;锌精矿含Zn 45.07%,Zn回收率83.88%;硫精矿含S 38.40%,S回收率81.78%。说明对混合精矿先分步脱硫,再铜锌分离可实现各矿物较彻底的分离。本研究可为混合粗精矿的高效浮选分离提供一定的参考。  相似文献   

4.
某难选高砷锌铟矿含铟260 g/t、锌1.55%、砷1.15%,铟的存在形式多样、矿物嵌布粒度细微导致该矿铟回收率低、精矿含砷偏高。在矿石性质基础之上采用全硫混合浮选—混合精矿再磨分离的工艺回收原矿中的铟与锌。通过闭路试验获得了锌品位53.09%、铟品位7 112 g/t的锌铟精矿,锌和铟和回收率分别为90.80%与73.91%。精矿中砷含量降低至0.53%,选别指标较好。  相似文献   

5.
根据石长温都尔铅锌银矿的矿石性质及含铜低、砷高的特点,试验采用了优先浮选分离流程,采取了系列降砷措施,有效地实现了毒砂与铜、铅、锌硫化物之间的分离;产出了铜、铅、锌三种合格精矿。全部满足了冶炼厂对精矿含砷的要求。  相似文献   

6.
内蒙古某铁铜锌锡多金属矿选矿工艺研究   总被引:1,自引:1,他引:0  
内蒙古某铁铜锌锡多金属矿是我国大型的铁锡为主的多金属共生矿,含铁35.54%、铜0.082%、锌0.85%、锡0.54%,主要回收的目的矿物为磁铁矿、黄铜矿、闪锌矿和锡石。通过多种选矿工艺流程的探讨和详细试验研究,最终采用磁选—铜锌混合浮选(铜锌分离)—锡重选(浮选脱砷)联合流程回收该矿中的铁、铜、锌和锡矿物,实验室闭路试验指标为铁精矿含铁66.37%、铁回收率83.57%,铜精矿含铜20.34%、铜回收率56.96%,锌精矿含锌45.21%、锌回收率80.02%,锡精矿含锡35.04%、锡回收率39.61%。  相似文献   

7.
根据石长温都乐铅锌银矿的矿石性质及含铜低,砷高的特点,试验采用了优先浮选分离流程,采限了系列降砷措施,有效地实现了毒砂与铜,铅,锌硫化物之间的分离,产出了铜,铅,锌三种合格精矿。全部满足了冶炼了对精矿含砷的要求。  相似文献   

8.
对某被药剂污染过的高砷硫精矿进行了砷硫分离研究。采用脱药-浮选-磁选联合工艺, 选用砷矿物的高效抑制剂HB, 较好解决了硫砷分离的难题, 获得了硫精矿硫品位47.43%、含砷0.67%、硫回收率75.31%, 高铁硫精矿硫品位33.67%、硫回收率18.96%, 砷精矿砷品位37.86%、砷回收率89.42%的技术指标, 实现了高砷硫精矿资源化利用。  相似文献   

9.
针对某高砷复杂铜锌多金属矿,采用优先浮选工艺实现了高效分选。以自主研制的ZY为锌抑制剂,实现了铜锌矿物的有效分离;以自主研制的SY为砷抑制剂,降低了有用矿物中有害元素砷的含量。实验室最终获得的分选指标如下:铜精矿品位22.14%,铜回收率87.45%。锌精矿品位45.61%,锌回收率90.14%。银在铜精矿中的品位为890g/t,回收率66.45%,在锌精矿中的品位为105g/t,回收率12.27%,银总回收率为78.72%。  相似文献   

10.
根据某含砷铜锌矿石的原矿性质,进行了多种药剂的条件试验和闭路试验研究,试验结果表明,采用铜优先浮选工艺和合理的药剂条件,可以有效地实现铜锌分离,组合抑制剂石灰+Y-As对毒砂的抑制效果好。试验室小型闭路试验可获得铜精矿含铜20.96%、锌6.88%、砷0.43%,铜回收率为75.20%,锌回收率为1.39%;锌精矿含铜0.45%、锌48.36%、砷0.35%,锌回收率为92.86%。  相似文献   

11.
随着世界经济及国内经济的持续迅速增长,浮选机大型化已成为必然趋势,但浮选机放大方法依然以经验放大为主。本文从充气机械搅拌式浮选机的原理入手,从形状和动力学两个方面研究了充气搅拌式浮选机的放大方法,其中:槽体的放大因子为槽体截面积与叶轮直径的比值,放大规则为SD=a1Vb1;叶轮形状的放大因子为叶轮直径,放大规则为D=a2Vb2;叶轮搅拌强度的放大因子为叶轮搅拌雷诺数,其放大规则为J=a5Vb5;浮选机动力学的放大因子为S/D倍的叶轮线速度,其放大规则为S/DV=a6Vb6。该放大方法也可用于自吸气机械搅拌式浮选机,对大型浮选机放大理论的研究有一定的促进作用。  相似文献   

12.
In conventional flotation flowsheets for treating copper sulphide ores containing small but significant amounts of arsenic, the arsenic is generally concentrated with the copper in final concentrate. Often, a penalty can be imposed by the smelter processing the concentrate, based on the arsenic content. In some cases the arsenic level is such that the smelter will not treat or accept the concentrate.A new approach to address this issue is reported in this paper, which is becoming more significant as the quality of the copper ore bodies currently being mined diminishes. A new flowsheet, based on the early removal of arsenic at the concentrator, has been developed and tested at bench-scale.The proposed flowsheet comprises three key steps: firstly, separation of arsenic and copper minerals using controlled-potential flotation to produce a low-arsenic high-copper concentrate and a high-arsenic low-copper concentrate. The low-arsenic concentrate can be sold without incurring any penalty for arsenic content. In the second stage, the high-arsenic concentrate is subjected to a low temperature roasting, where the arsenic is selectively fumed off into a low-volume stream product. The calcine from the roaster is high in copper and sulphur and can still be smelted directly. In the final stage of the flowsheet, the arsenic in the fume product is immobilised in a low temperature ceramic such that safe disposal back into the ground is possible.The new early removal flowsheet has been sequentially tested in the laboratory at small scale. The technical and economic merits of the flowsheet compared with that of the conventional copper flotation flowsheet show that there is a net benefit.  相似文献   

13.
崔立凤 《矿产综合利用》2013,34(1):23-26,39
文章简要介绍了江西赣州某硫化矿综合回收铜锌工艺试验研究。采用部分铜快速浮选、铜粗精矿再磨精选、选铜尾矿浮选回收锌的工艺流程处理该矿石,最终获得含铜30.55%,含锌3.91%的铜精矿Ⅰ,含铜26.11%,含锌4.99%的铜精矿Ⅱ,铜综合回收率90.8%;含锌45.20%、含铜2.97%,锌回收率81.57%的锌精矿,从而达到铜锌分离的目的。   相似文献   

14.
针对某铜铅锌硫矿实际生产中存在的问题:铜浮选作业中有13.35%的铜损失在铜尾矿中;硫精矿含锌1.10%,杂质锌含量超标;锌精矿产品质量不合格(锌品位为18.38%),对铜浮选作业进行了多流程方案对比开路试验以及主要工艺条件的调整与优化,可获得铜精矿铜品位15.11%,铜回收率92.30%指标,较现场铜回收率提高了5.65%。采用抑锌浮硫工艺流程,可将现场硫精矿中锌品位由1.16%降至0.41%。对现场锌精矿采用不再磨、再磨工艺均显著提高了锌品位(锌品位最高可达48.71%),同时对该流程下浮选尾矿可作为单独的硫精矿产品进行回收。  相似文献   

15.
多金属复杂铜矿铜锌硫分离浮选试验研究   总被引:21,自引:7,他引:14  
针对某复杂铜锌硫化矿石的综合回收开展分离浮选试验研究,试验研究结果表明:采用优先浮选流程,选用硫化钠、硫酸锌和亚硫酸钠合理组合抑锌选铜,最后从铜尾矿中选锌,实现了铜锌分离,获得了铜回收率73.18%、铜精矿品位22.21%,锌回收率67.55%、锌精矿品位43.20%的好指标。  相似文献   

16.
阙绍娟 《矿冶工程》2016,36(4):45-48
针对广西某低品位复杂铜锌多金属矿进行了选矿试验研究, 在磨矿细度-74 μm粒级占85%的情况下, 通过一粗三扫四精优先选铜、选铜尾矿一粗两扫三精选锌、选锌尾矿一粗两扫两精选硫砷、硫砷混合精矿一粗两扫两精再分离、中矿顺序返回的闭路试验流程, 获得铜精矿铜品位16.29%、铜回收率51.48%, 锌精矿锌品位45.61%、锌回收率72.15%, 硫精矿硫品位36.35%、砷品位0.67%、硫回收率46.09%, 砷精矿砷品位31.54%、砷回收率75.10%, 综合回收了矿石中的有价元素。  相似文献   

17.
西南某铜锌矿伴生银、锑,原试选指标只产出锌精矿产品,且回收率不理想,通过预除铜离子,对抑制剂进行优化组合,合理选择捕收剂和流程结构,有效解决了铜锌分离的问题,取得了铜精矿品位17.25%、回收率66.72%,锌回收率95.43%,银计价回收率84.27%的优异指标。并且工业化一年来指标稳定。  相似文献   

18.
某高砷锡石硫化铜矿粗粒浮选工艺研究   总被引:5,自引:1,他引:5  
试验用矿石为铜锡共生多金属硫化矿,矿石中的铜以细粒嵌布为主,且与黄铁矿、毒砂等致密共生。经过粗粒浮选工艺小型试验研究,采用粗磨-混合浮选-粗精矿再磨-铜砷(硫)分离的原则流程,能获得较好的技术指标。该工艺是在一段粗磨(-74μm占40%-45%)的条件下先富集单体及连生体硫化矿物,尾矿再进行选锡作业,这样有效地保护了锡石,减轻了锡石的过粉碎,为重选提供了好的给矿条件。铜粗精矿再磨再选,尾矿进入重选选锡,减少了锡石在硫化矿中的损失,提高了精矿铜品位和回收率,降低了精矿含砷量。该新工艺最终获得产率9.38%、品位23.58%、回收率91.17%的铜精矿,其中含砷仅为0.19%。同时锡在铜精矿中的损失也不到4%。  相似文献   

19.
红岭铜、铅、锌、铁多金属矿,铜、铅品位低,铅仅为0.04%。为综合回收各种有用矿物,进行了选矿工艺流程试验。多方案工艺流程试验比较后推荐铜铅混合浮选再分离-混尾选锌-锌浮选尾矿弱磁选的工艺流程。该流程很好兼顾了各种目的矿物的回收,取得较好的工艺指标,铜精矿品位23.52%、回收率71.27%,铅精矿品位45.77%、回收率59.78%,锌精矿品位54.05%、回收率93.65%,铁精矿品位66.09%、回收率33.50%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号