首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
美国蒂尔登铁矿浮选降磷研究   总被引:5,自引:1,他引:5  
采用选择性絮凝脱泥,阴离子反浮选工艺流程选别美国蒂尔登铁矿石获得良好结果。铁精矿含磷降至0.030%以下,铁精矿品位65.5%,回收率79.67%。  相似文献   

2.
李广 《矿山机械》2014,(5):98-102
湖南某铁矿受选矿工艺条件等因素限制,尾矿铁品位为18%~22%,赤铁矿部分未能得到有效回收。结合弱磁选尾矿的工艺矿物学性质进行研究,采用强磁选预先抛尾—选择性絮凝脱泥—反浮选工艺流程,获得铁精矿品位为62.09%,回收率为41.11%。该工艺流程结构合理、药剂环保、技术可行、经济合理,可获得微细粒高质量铁精矿,适合作为生产球团矿的原料。  相似文献   

3.
针对永州某地高泥细粒的贫赤铁矿采用选择性絮凝脱泥-强磁抛尾-阳离子反浮选组合新技术进行了选矿工艺研究。试验结果表明, 原矿经聚丙烯酰胺絮凝脱泥, 磁场强度960 kA/m下强磁选别, 得到含铁55%、回收率为85%的磁铁精矿; 后经GE-609A阳离子反浮选, 获得了品位为59.8%、回收率为94.2%的铁精矿。  相似文献   

4.
某微细粒赤铁矿选矿工艺研究   总被引:3,自引:1,他引:2  
对某微细粒赤铁矿分别采用阶段磨矿—重选—弱磁选—高梯度强磁选—反浮选工艺流程和阶段磨矿—弱磁选—高梯度强磁选—反浮选工艺流程进行了选别试验,前者获得的铁精矿铁品位为64.88%,铁回收率为79.91%,后者获得的铁精矿铁品位为65.45%,铁回收率为79.84%。从选别指标、流程结构及磨矿成本考虑,推荐采用阶段磨矿—弱磁选—高梯度强磁选—反浮选工艺流程。  相似文献   

5.
采用选择性絮凝脱泥-阳离子反浮选工艺流程对某细粒铁矿石进行了试验研究。结果表明,采用选择性絮凝脱泥.阳离子反浮选流程闭路试验可获得铁精矿品位为65.50%,回收率为83.09%的较好指标。依据试验室试验参数,在年处理量15万t的小型选矿厂进行了工业生产调试。采用多段脱泥,可以解决矿泥对浮选的影响。现场获得铁精矿品位64.77%,回收率78.65%的工业指标。  相似文献   

6.
云南某难选褐铁矿石选冶联合工艺研究   总被引:3,自引:0,他引:3  
柏少军  刘殿文  文书明 《矿冶》2009,18(3):16-20
云南某难选褐铁矿铁品位偏低,矿物嵌布粒度复杂,泥化现象严重,有害元素含量高,属难选矿石,常规的强磁选、重选、浮选工艺对该矿石几乎没有分选效果。鉴于对该矿石工艺矿物学的研究,采用了强磁选—反浮选—磁化还原焙烧—弱磁选的选冶联合工艺,获得了铁品位为69.87%,回收率为55.27%的铁精矿,其中含磷0.39%,含硫0.2%,含硅6.38%,为类似难选褐铁矿的分选提供了一条新的思路。  相似文献   

7.
某微细粒嵌布贫铁矿合理选矿工艺研究   总被引:7,自引:0,他引:7  
某铁矿石中磁铁矿和赤铁矿的嵌布粒度相差悬殊, 磁铁矿具有中细粒嵌布的特点, 赤铁矿则属于典型极微细粒嵌布的范畴。针对该铁矿石的嵌布粒度特性, 采用弱磁选-强磁选-絮凝脱泥-反浮选联合工艺流程, 获得了铁品位为61.77%、回收率为62.55%的铁精矿。  相似文献   

8.
对湖南某石英型赤褐铁矿进行了选择性絮凝-强磁选-反浮选试验研究。结果表明, 在磨矿细度-0.074 mm粒级占90.80%、水玻璃用量800 g/t、聚丙烯酰胺用量100 g/t、磁选粗选磁场强度1.4 T、扫选磁场强度1.6 T条件下, 获得了铁品位56.17%、回收率60.12%的铁精矿; 强磁选尾矿进行反浮选, 获得了铁品位47.90%、铁回收率31.46%的中矿和铁品位15.69%、铁回收率8.41%的尾矿。选择性絮凝有利于矿泥与铁矿的分离, 可提高铁的回收效果。  相似文献   

9.
山东某铁尾矿TFe品位为19.97%,铁主要存在于赤(褐)铁矿中,铁在赤(褐)铁矿中分布率为62.41%。试样粒度分布不均,铁主要分布在-0.019 mm粒级中,铁在该粒级分布率为24.54%。为回收试样中铁,进行了磁选—絮凝—反浮选试验。结果表明:弱磁—强磁预富集得到了铁品位为42.88%、回收率为68.33%的磁选混合精矿,混合精矿在磨矿细度为-200目占93.48%条件下,以NaOH为pH调整剂,FZ-1为絮凝剂经过两段选择性絮凝脱泥得到了铁品位为47.65%、回收率为63.76%的沉砂,沉砂以Na OH为调整剂和分散剂、淀粉为抑制剂、CaO为活化剂、CM-5为捕收剂在常温(25℃)条件下经1粗1精3扫反浮选,得到了铁品位为65.43%、回收率为53.34%的铁精矿,试验结果可以为该铁尾矿中铁的回收提供参考。  相似文献   

10.
某微细粒嵌布铁矿石磁选—絮凝脱泥—反浮选试验   总被引:1,自引:0,他引:1  
唐雪峰 《金属矿山》2015,44(2):53-57
湖南某铁矿石中铁矿物以磁铁矿为主,赤铁矿次之,并有12.12%的铁以硅酸盐矿物形式存在。其中磁铁矿属中细粒嵌布,但赤铁矿具典型极微细粒嵌布特征,分选难度极大。根据矿石性质,采用阶段磨矿—弱磁选—强磁选—选择性絮凝脱泥—反浮选工艺进行选矿试验,即第1步在-0.075 mm占65.87%的较粗磨矿细度下通过弱磁选选出磁铁矿,第2步通过强磁选抛尾富集弱磁选尾矿中的赤铁矿,第3步对强磁选精矿进行2段阶段细磨(一段磨至-0.038 mm占96.56%,二段磨至-0.019 mm占98.93%)、4段加磁种的选择性絮凝脱泥(以所得磁铁矿精矿为磁种,与强磁选精矿一起细磨),第4步对脱泥沉砂进行1粗1精4扫反浮选,最终获得了产率为32.33%、铁品位为63.55%、铁回收率为71.34%的综合铁精矿,从而为该矿石的合理开发利用提供了技术支撑。  相似文献   

11.
针对某贫细赤铁矿进行强磁选—反浮选工艺流程试验和扩大连续试验,较好地回收了有用矿物赤铁矿,并有效地降低了铁精矿中的SiO2等杂质含量,最终可以得到铁品位63.5%、SiO2品位5.82%、铁回收率71.11%的铁精矿.扩大连续试验技术指标和闭路试验指标基本吻合,比较圆满地实现了连选过程平衡,各作业运行状况稳定,技术指标稳定,结果比较理想,为下一步工业试验及工业生产打下一定基础.  相似文献   

12.
某低品位磁铁矿石中磁性铁品位21.85%,S含量2.68%,其中磁黄铁矿中硫占原矿总硫的51.12%。试验研究采用联合流程:磁-浮工艺获得TFe品位64.10%、磁性铁回收率79.50%、含S0.45%的铁精矿;磁-浮-化学处理流程获TFe品位64.23%、含硫0.046%、磁性铁回收率78.67%的优质铁精矿。  相似文献   

13.
孙朋  胡宜斌 《矿冶工程》2019,39(2):61-64
对山东某褐铁矿进行了磁化焙烧-磁选试验。在工艺矿物学研究的基础上, 对该矿进行了不同粒度预选试验和焙烧、磁选分选试验, 并进行了多流程对比试验; 开发出了适合该矿的选矿工艺流程, 在原矿TFe品位31.31%条件下, 采用预选-焙烧-弱磁选-磨矿-弱磁选工艺, 取得了精矿产率49.69%、TFe品位59.48%、回收率94.40%的指标。  相似文献   

14.
赖伟强 《金属矿山》2017,46(5):73-78
某含铜0.37%、含钼0.0096%,硫化铜占总铜的89.19%、硫化钼占总钼的85.42%的低品位斑岩型铜钼矿石,其可供综合回收或伴生回收的元素有金、铼等贵金属和铁,矿石中含有的少量片状石墨将影响钼矿物的浮选效果。为确定该矿石的选矿工艺,进行了选矿试验。结果表明,矿石经1粗3精铜钼等可浮、1粗4精1扫铜钼分离、1粗3精2扫强化浮铜、1粗1精1扫弱磁选选铁、中矿顺序返回流程处理,可获得钼品位36.33%、含铜1.69%、钼回收率68.12%的钼精矿,铜品位19.24%、含金2.42 g/t、含钼0.095%、铜回收率84.94%的铜精矿,铁品位66.19%、铁回收率50.87%的铁精矿。浮选钼精矿经重选脱碳,获得了钼品位49.03%、钼综合回收率为58.35%、含铼618.46 g/t、铼综合回收率为27.22%的钼精矿。  相似文献   

15.
安徽某铁矿石中主要铁矿物为磁铁矿,采用阶段磨矿阶段弱磁选可选别出品位65.25%、回收率80.33%的铁精矿;选铁尾矿先混合浮选再分离得到品位15.04%、回收率72.51%的铜精矿和品位47.4%、回收率83.93%的硫精矿,实现了资源的充分利用。  相似文献   

16.
四川攀西地区某难选铁矿的工艺矿物学及选矿试验   总被引:4,自引:0,他引:4  
对攀西地区某难选铁矿进行了工艺矿物学研究及选矿试验,确定了选矿工艺流程。试验表明,采用焙烧磁选反浮选降磷的工艺可以得到铁品位为60.89%、含磷0.222%的合格铁精矿,且回收率可达到72.74%。  相似文献   

17.
钒钛磁铁精矿铁钒钛综合利用新流程   总被引:4,自引:0,他引:4  
对攀西地区太和铁矿所产的钒钛磁铁精矿,采用冷固球团直接还原—磨矿磁选的新流程成功实现了Fe/V、Ti的有效分离。还原前铁精矿品位为TFe52.47%,TiO213.42%,V2O50.595%,经还原—分选后,磁性产物品位为TFe91.25%(ηFe98.63%)、TiO24.21%,V2O50.22%,铁回收率为92.24%,经压团后可作为电炉炼钢的优质炉料;非磁性物品位TFe16.35%、TiO245.74%、V2O51.94%,V2O5及TiO2回收率分别为82.65%和80.88%,可作为提钒钛的优质原料或直接作为钛精矿销售,钒钛回收率分别比传统长流程提高18%和80%。实现Fe/V、Ti有效分离的关键在于采用冷固球团直接还原专利技术及球团内添加高效添加剂。  相似文献   

18.
某斑岩型铜钼矿浮选试验研究   总被引:1,自引:1,他引:0  
针对南美某斑岩型铜钼伴生矿进行浮选工艺试验研究。使用常规药剂,在-74μm 50%的入选粒级下,采用粗选抛尾、再磨精选、铜钼分离、钼精选流程闭路浮选试验得到铜精矿含铜36.03%、铜回收率89.83%和钼精矿含钼46.60%、钼回收率75.77%的优良指标,为开发利用该特大型铜钼矿提供了工艺依据。  相似文献   

19.
某酸性微细粒原生磁铁矿矿石,原矿品位TFe38.9%,在详细条件试验的基础上,最终确定采用粗粒(-3mm)磁选抛尾—阶段磨矿(最终磨矿细度-0.045mm 95%)-阶段磁选-磁重分选流程,可得产率37.96%(选矿比2.63)、品位TFe62.09%、全铁回收率60.59%的铁精矿,选别指标较好。该工艺流程结构简单,经济实用,为开发同类或近类矿石提供借鉴意义。  相似文献   

20.
叶军建  张覃  周颖  姜毛  李先海 《金属矿山》2011,40(12):145-147
为分离某硫铁矿尾矿经弱磁选后所得精矿中主要以磁铁矿和磁黄铁矿形式存在的铁和硫,使该资源得到利用,对其进行了再选试验。试验结果表明,采用浮选-弱磁选-焙烧工艺可达到分离目的:原磁选精矿经浮选后,可获得硫品位为31.08%、硫回收率为82.91%的硫精矿;浮选尾矿经弱磁选和焙烧后,可获得铁品位为62.61%、硫含量为0.21%、SiO2含量为3.87%、对原磁选精矿铁回收率为31.03%的铁精矿。将所得硫精矿模拟制酸焙烧后对烧渣进行检测,烧渣铁品位为61.08%、硫含量为0.23%、SiO2含量为5.09%,可直接作为铁精矿利用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号