首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
磁化焙烧工艺作为处理难选铁矿资源的有效工艺,近年来在菱铁矿资源开发中的应用研究取得了巨大进展。在菱铁矿磁化焙烧的工业化生产中,焙烧产品的冷却是影响焙烧产品品质的重要环节。以西北某矿区菱铁矿为研究对象,通过拣选—强磁选—重选流程得到纯度为80.6%的菱铁矿作为试验物料进行磁化焙烧,考察了惰性气氛冷却、水淬冷却、空气气氛冷却对焙烧产品的影响,深入研究了空气气氛冷却方式下,焙烧产品在不同氧化温度、氧化时间条件下的氧化行为和相变情况。结果表明:焙烧产品在惰性气氛冷却和水淬方式冷却过程中基本不发生氧化反应;在空气冷却方式下,氧化温度和氧化时间对菱铁矿磁化焙烧产品的影响显著;在氧化温度为100℃,焙烧产品基本不发生氧化;在氧化温度高于300℃,焙烧产品开始发生明显氧化;氧化温度为500℃、氧化时间2.5 min时,焙烧产品中的磁铁矿全部被氧化。磁化焙烧产品氧化后生成α-Fe_2O_3和γ-Fe_2O_3两种铁物相,在氧化反应过程中先生成γ-Fe_2O_3,后生成α-Fe_2O_3。试验结果可以为菱铁矿磁化焙烧工艺的优化提供参考。  相似文献   

2.
细粒铁物料闪速磁化焙烧前后的性质表征   总被引:1,自引:1,他引:0  
黄红  罗立群 《矿冶工程》2011,31(2):61-64
对-0.30 mm酒钢富含镜铁矿、褐铁矿和镁(锰)菱铁矿的难选铁粉料进行了闪速磁化焙烧研究, 在弱还原气氛和740~800 ℃下, 通过闪速磁化焙烧处理, 获得了铁品位为55.67%~55.21%、铁作业回收率为81.66%~86.57%的弱磁选铁精矿。闪速焙烧前后物料的X射线衍射、磁性能测定和穆斯堡尔谱分析表明: 弱磁性细粒铁矿物的相均转变为龟裂较为发育的人造磁铁矿, 化学成分为Fe3O4, 其比饱和磁矩较焙烧前增加33~42倍不等, 计算表明闪速磁化焙烧的速度较常规的磁化焙烧时间快几十至数百倍; 在闪速磁化焙烧过程中, 菱铁矿的磁化转变过程主要由化学反应速度控制, 而镜铁矿的磁化转变过程受扩散控制影响, 部分未转化完全。  相似文献   

3.
菱铁矿是我国重要的铁矿石资源,悬浮磁化焙烧是处理复杂难选铁矿的有效方法。本文采用实验室小型悬浮磁化焙烧装置,针对重庆接龙铁矿,开展悬浮磁化焙烧工艺优化及焙烧温度对磁化焙烧产品性能的研究。研究结果表明,接龙铁矿预氧化产品在焙烧温度为500℃、焙烧时间为3 min,CO用量为0.2 L/min的条件下,获得了铁精矿品位56.31%,回收率92.05%的试验指标。XRD分析表明,在450~550℃范围内,还原焙烧3 min,均可实现大部分的赤铁矿转变为磁铁矿,提高温度有利于赤铁矿还原更彻底,还原温度对焙烧产品的磁性影响较小。预氧化样品经还原焙烧后,比表面积降低,存在孔结构坍塌破坏后被填充的现象,导致孔尺寸增加。孔结构的改变,可能对后续的磨矿磁选造成一定的影响。研究结果对认识悬浮磁化焙烧规律有一定的意义。   相似文献   

4.
王家滩菱铁矿流态化磁化焙烧试验研究   总被引:3,自引:1,他引:2  
对王家滩菱铁矿在流态化状态下的磁化焙烧温度和焙烧气氛条件分别进行了试验研究。试验结果表明:焙烧矿样中菱铁矿热解率大于94.5%,磁性铁转化率大于89.94%;在弱还原气氛(1.5%CO)、800~1060 ℃的温度条件下,获得了铁回收率大于90.00%,精矿品位大于58.00%的指标;在1 000 ℃的温度条件下,无论在弱还原气氛(0~1.05%CO)还是弱氧化气氛(0.47%~1.85%CO)中焙烧,均能获得铁回收率大于90.00%的良好指标。  相似文献   

5.
悬浮磁化焙烧—磁选技术是处理复杂难选铁矿石的有效技术手段,而悬浮焙烧产品特性决定着分选指 标的优劣,因此对悬浮磁化焙烧产品进行特性分析具有重要意义。 以酒钢镜铁山粉矿为研究对象,探究了焙烧时间、 焙烧温度、CO 浓度对焙烧产品磁选分选指标的影响规律。 采用 X 射线衍射分析、振动样品磁强计和扫描电子显微 镜,从物相转化、磁性转变及微观结构 3 个角度分析悬浮磁化焙烧产品的特性。 试验结果表明:在焙烧时间 10 min、焙 烧温度 570 ℃ 、CO 浓度 20%的条件下进行悬浮磁化焙烧,经磁选可以获得精矿铁品位 52. 98%和铁回收率 83. 92%的 最佳指标。 经过磁化焙烧,原矿中的赤铁矿与菱铁矿转化为强磁性的磁铁矿,而脉石矿物磁化焙烧前后无明显变化。 磁化焙烧反应由颗粒表面向内部逐渐发生,随着反应的逐渐进行,颗粒内部结构不断被破坏,变得疏松多孔,呈现出 蜂窝状形貌。  相似文献   

6.
磁化焙烧工艺作为处理难选铁矿资源的有效工艺,近年来在铁矿资源开发中的应用研究取得了巨大进展。在铁矿磁化焙烧的工业化生产中,焙烧产品的冷却是影响焙烧产品品质的重要环节。以西北某矿区褐铁矿为研究对象,通过拣选—强磁选—重选流程得到纯度为 92.0% 以上的褐铁矿作为试验物料进行磁化焙烧,考察了惰性气氛冷却、水淬冷却、空气气氛冷却对焙烧产品的影响,深入研究了空气气氛冷却方式下,焙烧产品在不同氧化温度、氧化时间条件下的氧化行为和相变情况。结果表明:焙烧产品在惰性气氛和水淬方式冷却过程中基本不发生氧化反应;在空气冷却方式下,氧化温度和氧化时间对褐铁矿磁化焙烧矿产品影响显著;在氧化温度为 100 ℃ 时,焙烧产品基本不发生氧化。在氧化温度高于 300 ℃时,焙烧产品开始发生明显氧化。氧化温度为 400 ℃、氧化时间 2.0 min 时,焙烧产品中的磁铁矿全部被氧化。磁化焙烧产品氧化后生成 α-Fe2O3和 γ-Fe2O3两种铁物相,在氧化反应过程中先生成 γ-Fe2O3,后生成 α-Fe2O3。试验结果可以为褐铁矿磁化焙烧工艺的优化提供参考。  相似文献   

7.
磁化焙烧工艺作为处理难选铁矿资源的有效工艺,近年来在铁矿资源开发中的应用研究取得了巨大进展。在铁矿磁化焙烧的工业化生产中,焙烧产品的冷却是影响焙烧产品品质的重要环节。以西北某矿区褐铁矿为研究对象,通过拣选—强磁选—重选流程得到纯度为 92.0% 以上的褐铁矿作为试验物料进行磁化焙烧,考察了惰性气氛冷却、水淬冷却、空气气氛冷却对焙烧产品的影响,深入研究了空气气氛冷却方式下,焙烧产品在不同氧化温度、氧化时间条件下的氧化行为和相变情况。结果表明:焙烧产品在惰性气氛和水淬方式冷却过程中基本不发生氧化反应;在空气冷却方式下,氧化温度和氧化时间对褐铁矿磁化焙烧矿产品影响显著;在氧化温度为 100 ℃ 时,焙烧产品基本不发生氧化。在氧化温度高于 300 ℃时,焙烧产品开始发生明显氧化。氧化温度为 400 ℃、氧化时间 2.0 min 时,焙烧产品中的磁铁矿全部被氧化。磁化焙烧产品氧化后生成 α-Fe2O3和 γ-Fe2O3两种铁物相,在氧化反应过程中先生成 γ-Fe2O3,后生成 α-Fe2O3。试验结果可以为褐铁矿磁化焙烧工艺的优化提供参考。  相似文献   

8.
对大西沟菱铁矿石在中性气氛条件下进行磁化焙烧—弱磁选试验研究。结果表明,在焙烧温度为650℃、焙烧时间为40 min条件下直接焙烧,焙烧产品磨细至-0.043 mm占95%,在磁场强度为104 k A/m条件下弱磁选,获得的精矿铁品位为57.09%、铁回收率为90.17%,Si O2含量为12.03%,精矿还需进行提铁降硅试验。焙烧使矿石中的菱铁矿和褐铁矿转变为强磁性的磁铁矿,焙烧后物料的磁化强度和比磁化率均显著提高,增大了物料中铁矿物与脉石矿物的磁性差异,因而可通过弱磁选进行有效分离。  相似文献   

9.
基于流态化焙烧手段,对鞍山某含菱铁矿难选混合铁矿预富集精矿的磁化焙烧过程物相转变行为进行了研究。参照工业还原气条件的直接磁化焙烧结果显示,预富集精矿中的菱铁矿会产出弱磁FeO,降低磁化率。采用氧化—还原的工艺,可以将菱铁矿改性为弱磁赤铁矿α-Fe2O3和磁赤铁矿γ-Fe2O3,避免分解产物FeO存在。但后续500~550 ℃长时间还原仍会出现弱磁FeO,只有在还原温度450 ℃磁赤铁矿γ-Fe2O3的还原产物Fe3O4能够稳定存在。据此提出了“低温预氧化—超低温还原”磁化焙烧工艺,能够实现含菱铁矿混合难选铁矿的稳定磁性转化,且满足生产适应性需求。经该流态化工艺磁化焙烧后,预富集精矿焙烧矿经弱磁选可达到铁精矿产品铁品位65.15%、铁回收率92.02%的良好指标。实验结果为含菱铁矿混合难选铁矿的磁化焙烧生产工艺开发提供了参考依据。  相似文献   

10.
甘肃某镜铁矿石主要有价元素为铁,TFe含量为59.61%,原矿中94.79%的铁以赤褐铁的形式存在,脉石矿物主要为石英,含量为8.11%。为考察焙烧过程主要影响因素对焙烧产物的物相转化与磁性转变的影响,进行了悬浮焙烧试验。结果表明:镜铁矿经悬浮磁化焙烧后,焙烧产物中铁主要以磁铁矿的形式存在,磁性明显增强;随着焙烧温度升高、焙烧时间延长、CO浓度增加、总气量增加,焙烧产品中镜铁矿含量均逐渐降低,磁铁矿含量均逐渐增加,焙烧产品饱和磁化强度和最大比磁化系数均先提高后降低;在焙烧温度为550 ℃、焙烧时间为4 min、CO浓度为20%、总气量为600 mL/min时,焙烧产物的比饱和磁化强度为63.66 A·m2/kg、最大比磁化系数为5.02×10-4 m3/kg;焙烧过程铁物相按照Fe2O3→Fe3O4→FeO的反应顺序进行,焙烧产物铁物相的转化会影响铁矿物磁性的强弱,并且主要与磁铁矿的含量相关。试验结果可以为我国镜铁矿资源悬浮焙烧过程机理研究提供理论依据。  相似文献   

11.
东鞍山烧结厂含菱铁矿浮选中矿经700 ℃还原焙烧-磁选工艺处理,可以得到品位为60.43%,回收率为83.59%的铁精矿。利用X射线衍射分析和扫描电镜分析手段着重对焙烧过程中铁矿物的转化机制进行了研究,结果表明,随着焙烧温度的改变,焙烧过程将经历菱铁矿分解、赤铁矿还原和铁矿物过反应3个阶段,其中赤铁矿还原阶段对应的焙烧温度正是700 ℃,此时焙烧产品中的铁矿物以磁铁矿为主,最有利于弱磁选。  相似文献   

12.
悬浮磁化焙烧—磁选已在难选铁矿石的开发中实现工业应用,焙烧产物的冷却过程是影响磁选指标的 重要因素。 空气氧化冷却可以将焙烧产物中的部分磁铁矿氧化成强磁性磁赤铁矿,同时可以回收氧化过程释放的潜 热,具有广阔的应用前景。 对酒钢铁矿石进行了悬浮磁化焙烧—氧化冷却试验。 结果表明,氧化温度、氧化时间和空 气流量对氧化过程及磁选指标影响显著。 最佳的氧化条件为氧化温度 300 ℃ 、氧化时间 5 min、空气流量 500 mL / min。 在最佳条件下,氧化冷却产物中磁赤铁矿含量为 17. 74%,磁选精矿铁品位为 55. 34%、铁回收率为 90. 31%。 焙 烧产物的氧化冷却过程按两条路径同时进行,一是 Fe3O4→α—Fe2O3,二是 Fe3O4→γ—Fe2O3→α—Fe2O3;氧化温度高 于 300 ℃时,磁铁矿主要被氧化为赤铁矿。 因此,焙烧产物在氧化冷却时,应先在 N2 中冷却至 300 ℃ ,再经空气氧化 冷却至室温,以获得较高的磁赤铁矿含量。  相似文献   

13.
磁化焙烧是处理菱-赤混合型铁矿石最有效的手段,焙烧过程的动力学研究可为实现该类铁矿石磁化焙烧关键技术提供理论支撑。采用X射线衍射、自制热重分析炉、扫描电镜等途径对矿石磁化焙烧过程的动力学及焙烧产品的微观形貌进行了研究,结果表明:矿石在焙烧过程中可不添加任何还原剂使菱铁矿和赤铁矿全部转变为磁铁矿,菱铁矿分解反应的发生是整个反应过程的限制性环节;在一定范围内增加焙烧温度,可使矿石的焙烧反应更加完全,同时有利于矿物在较短的时间内达到较高的反应速度,缩短反应完成所需要的时间。矿石磁化焙烧过程的机理函数符合随机成核与随后生长模型,表观活化能E和指前因子A分别为74.48 k J/mol、27.39 min-1。焙烧后产品表面有大量微裂纹产生,铁矿物与脉石矿物共生关系紧密,在后续选别作业前还需对其进行细磨,焙烧产品中Mg、Ca、Mn元素与Fe元素以类质同象形式共生,将影响最终铁精矿品位。  相似文献   

14.
大西沟菱铁矿煤基回转窑磁化焙烧半工业试验   总被引:6,自引:2,他引:4  
用Φ1.3 m×24 m煤基回转窑对大西沟菱铁矿(品位TFe 26.82%)进行了中性磁化焙烧半工业试验。控制合适的焙烧温度场和气氛场, 焙烧矿排入水中淬冷。水冷焙烧矿磨矿至95.60% -0.045 mm, 经磁场强度1.19×102 kA/m的磁选管选别得磁精矿的产率44.52%, 品位TFe 59.84%, 回收率86.41%的理想指标, 为我国菱铁矿的开发利用开辟了新的有效途径。  相似文献   

15.
配加菱铁矿生产球团矿的基础性能研究   总被引:1,自引:0,他引:1  
为了探索配加和采用菱铁矿作为原料生产球团矿时其焙烧工艺特性和球团矿质量的变化规律, 采用小饼基础性能试验研究方法和四因素三水平正交试验设计方案进行了预热、焙烧工艺性能试验研究, 结果表明:随着菱铁矿配比的提高, 预热后小饼强度降低;最佳预热条件为:温度1 000 ℃, 时间15 min, 膨润土配比2.0%。最佳焙烧条件为:温度1 300 ℃, 时间20 min, 膨润土配比2.0%;随着菱铁矿配比的提高, 焙烧后小饼强度降低。  相似文献   

16.
铁酸锌还原-氧化选择性分解行为研究   总被引:1,自引:1,他引:0  
为了解决铁酸锌还原分解后锌、铁分离难题, 提出一种强化铁酸锌选择性分解新工艺: 先通过还原焙烧将铁酸锌分解为氧化锌和铁氧化物, 然后冷却至低温, 在CO2气氛下利用氧化亚铁在低温下化学活性强、不稳定的特性, 将过还原的氧化亚铁转化为磁性四氧化三铁。研究结果表明, 铁酸锌强化还原分解的最佳条件为: CO浓度20%、还原温度750 ℃、VCO/(VCO+VCO2)比67%、焙烧时间90 min, 该条件下铁酸锌分解率达到96.63%; 然后对铁酸锌分解产物进行磁化焙烧, 最佳磁化焙烧条件为: 氧化温度600 ℃、氧化时间75 min、CO2气体流量1.2 L/min, 此条件下焙烧产物比磁化率从未磁化前的5.30×10-11 m3/kg增大至1.17×10-10 m3/kg。  相似文献   

17.
大西沟菱铁矿闪速磁化焙烧-磁选探索试验   总被引:8,自引:5,他引:3  
采用自主研发的闪速磁化焙烧中试装置,对铁品位为21.21%的大西沟铁矿菱铁矿-1 mm粉矿进行闪速磁化焙烧-弱磁选探索性试验,获得了铁精矿产率为38%~40%,铁品位>56%,金属回收率>80%的良好试验指标,为难选弱磁性铁矿石的高效利用开辟了新的工艺路线。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号