首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 437 毫秒
1.
为获得轻质且强度高的新型脱硫石膏砌块材料,以脱硫石膏为原料,通过添加膨胀珍珠岩、玻璃纤维和防水剂制备新型脱硫石膏砌块,研究新型石膏砌块表观密度、断裂荷载、抗压强度、软化系数、吸水率等变化情况。结果表明,当膨胀珍珠岩掺量为1.25%、玻璃纤维饱和掺量为1.4%、防水剂掺量为2%时,石膏砌块的表观密度及力学性能最优,此条件下制备砌块砖的表观密度为959kg/m~3,断裂荷载为2.72kN,抗压强度为10.7MPa。  相似文献   

2.
以脱硫石膏、膨胀珍珠岩为主要原材料制备膨胀珍珠岩/脱硫石膏复合材料,利用单因素实验法研究了材料制备方式、试件振捣次数、膨胀珍珠岩掺量等对其性能的影响,并确定出较优制备方式。结果表明,采用脱硫石膏与柠檬酸先混合搅拌均匀,再加入膨胀珍珠岩搅拌,最后加入水搅拌,直接成型,当膨胀珍珠岩的掺量为2.0%时,制备的复合材料绝干抗折强度、绝干抗压强度、饱水抗折强度和饱水抗压强度分别为3.83 MPa、8.92 MPa、1.66 MPa和4.26 MPa,干表观密度为1.166 g/cm3,满足规范使用要求。   相似文献   

3.
以含氢硅油为防水剂,司盘80、吐温80及OP-10为乳化剂制备含氢硅油乳液,在脱硫石膏砌块中掺加0.2%~1.0%含氢硅油乳液,研究含氢硅油乳化前后对脱硫石膏砌块耐水性能的影响。结果表明,一定掺量未乳化含氢硅油和含氢硅油乳液能有效提高脱硫石膏砌块的防水性能,当含氢硅油乳液掺量大于0.6%时,乳液与砌块的接触角为0o;当含氢硅油乳液的掺量为0.8%时,脱硫石膏砌块的软化系数最大,为0.81。砌块表面形貌是由很多微孔组成,在掺有含氢硅油乳液的脱硫石膏砌块中未发现挥发水留下的宏孔。水化硬化生成的二水硫酸钙晶体形貌为短棒状,有利于增加孔壁致密度,从而提高脱硫石膏砌块的耐水性能。  相似文献   

4.
针对出口市场需求的高密度高强度石膏砌块进行研究,通过对脱硫石膏掺加减水剂,提高脱硫半水石膏浆体的流动性,增强二水石膏结晶体密实度,进一步增强石膏的强度。依据半水石膏转化二水石膏的理论基础,采取倒推法确定半水石膏配料,水作为填充剂充满石膏砌块模具容积。生产出的高密度高强度脱硫石膏砌块符合欧洲标准EN 12859:2011要求,密度平均值1 230kg/m~3;断裂荷载146KN;抗压强度14.5MPa,满足了出口市场需求。  相似文献   

5.
以利用轮窑及烧结制品余热煅烧脱硫石膏制备的建筑石膏为主要原料,通过掺加粉煤灰、水泥、矿渣粉掺和料后,在石灰的激发下制备石膏基胶凝材料及制品.利用正交试验考察各掺加料对胶凝材料强度的影响,以正交试验所得最佳配合比为基础,采用了优化配合比进行验证试验,研究了制备石膏砌块的可行性,并通过XRD和SEM分析了改善胶凝材料强度的机理.结果表明,粉煤灰和矿渣粉的掺加量是影响胶凝材料强度的关键因素;以建筑石膏75.0%、粉煤灰12.0%、矿渣粉3.0%、水泥7.0%、石灰3.0%的胶凝材料制作的KP 600 mm×500 mm×100 mm空心石膏砌块,表现密度可降到794 kg/m3,断裂荷载达2216N.  相似文献   

6.
以工业副产脱硫建筑石膏为主要原料,有机硅防水剂为添加剂,采用化学发泡和掺入EPS颗粒两种不同的工艺制备轻质石膏制品,研究了其对干密度和吸水率的影响。结果表明,随水膏比及发泡剂用量的增加,发泡石膏制品干密度降低,吸水率升高,最佳水膏比为0.55,发泡剂掺量在16%;加入适量甲基硅酸钠不但可改善发泡石膏制品的耐水性,还可催化发泡剂降低石膏制品干密度,改善石膏制品孔结构,其最佳掺量在4%;聚苯乙烯(EPS)颗粒的适量掺入能有效降低石膏制品干密度和吸水率。EPS颗粒掺量为3.5%时,石膏制品干密度比未掺EPS颗粒降低65%,比化学发泡法制得的石膏降低32%。EPS颗粒掺量为2.5%时,其吸水率仅达到4.3%,比化学发泡法制得的石膏降低85%。  相似文献   

7.
通过在脱硫石膏中掺入膨胀聚苯乙烯(EPS)颗粒与玄武岩纤维,研究具有轻质与增韧性的脱硫石膏复合材料。结果表明,脱硫石膏中EPS颗粒的最佳掺量为0.9%;当玄武岩纤维掺量为1.6%时,EPS颗粒/脱硫石膏材料在干燥状态下的抗压与抗折强度分别为6.50 MPa和3.98MPa,与未掺纤维相比,强度分别提升35.98%和67.93%。在此条件下获得的EPS颗粒/脱硫石膏试块吸水率为25.81%,表观密度为0.834 g/cm~3,EPS颗粒/脱硫石膏复合材料性能较优。  相似文献   

8.
为掌握不同掺量对石膏胶凝材料强度的影响规律,以建筑脱硫石膏等为原料,采用正交试验的方法制备石膏基复合胶凝材料,并建立影响其7 d抗压强度主要因素的BP神经网络模型,在此基础上对晶须掺量等不同影响因素的条件进行了优化。结果表明,各因素对石膏砌块7 d抗压强度的影响由小到大依次为水泥:矿渣掺量、减水剂掺量、缓凝剂掺量、中和渣掺量和晶须掺量;而利用BP神经网络模型优化后的工艺参数:晶须掺量为6.40%、聚羧酸减水剂掺量为1.28%、水泥:矿渣掺量为1:3、煅烧中和渣掺量为2.00%及柠檬酸缓凝剂掺量为0.114%。在此条件下,所得石膏胶凝材料的7 d抗压强度为14.62 MPa,与正交试验结果相比提高了2.024%;同时利用BP神经网络模型进行优化可在一定程度上降低外加剂的用量,其中聚羧酸减水剂、晶须和柠檬酸缓凝剂的掺量分别减少了0.12%、0.60%和0.006%。研究对石膏类废弃物的回收及其在矿山充填中的应用有一定的参考意义。  相似文献   

9.
以改善石膏耐水性为目的,采用复合硅酸盐水泥作为无机改性剂,研究复合硅酸盐水泥及其掺量对石膏表观密度、强度、吸水率、软化系数的影响。结果表明,适量复合硅酸盐水泥的掺入可以改善石膏的强度、软化系数及吸水率;水泥的最佳掺量应为20%,此时石膏干抗压强度、干抗折强度、湿抗压强度、湿抗折强度、抗压软化系数、抗折软化系数分别为22.82 MPa、6.95 MPa、10.73 MPa、4.22 MPa、0.47、0.61,相较于未掺入分别提高18.85%、14.12%、46.79%、31.06%、23.68%、15.09%。  相似文献   

10.
生石灰作为粉煤灰活性激发剂掺入粉煤灰-石膏混合体系中,探究其对粉煤灰-石膏复合材料表观密度、强度、吸水率以及软化系数等指标的影响,达到改善石膏不耐水的缺陷和降低生产成本的目的。结果表明:生石灰最优掺量为24%,此时石膏表观密度增加4.3%,吸水率降低15.84%,干抗压强度增加21.78%,湿抗压强度增加34.32%,湿抗折强度增加12.37%,抗压软化系数增加10.50%,抗折软化系数增加62.36%。  相似文献   

11.
以磷酸、氢氧化铝和膨胀珍珠岩为主要原料,以氧化镁和氧化锌为固化剂制备膨胀珍珠岩/磷酸盐保温板材。运用单因素研究法探究了胶黏剂基料制备温度和时间、样品的干燥温度和时间对保温材料性能的影响。采用X射线衍射和红外光谱技术研究了磷酸盐的固化机制。结果表明,磷酸盐胶黏剂在水浴85℃加热30 min制备;黏结珍珠岩板材的最优制备条件为140℃干燥2 h,其密度为260 kg/m3、导热系数为0.050W/(m·K)、抗压强度为0.63 MPa。  相似文献   

12.
大比例掺用铁尾矿制备轻质保温墙体材料   总被引:1,自引:0,他引:1  
以水泥为胶凝剂、黄石市灵乡铁矿尾矿为主要原料制备轻质保温墙体材料,研究了轻骨料膨胀珍珠岩、铁尾矿及其碱性激发剂掺量和水灰比对试件抗压强度、容重、导热系数的影响。结果表明:试验用碱性激发剂对铁尾矿的活性有显著的激发作用,从而可提高铁尾矿的掺用比例、减少水泥用量;当水泥、铁尾矿、激发剂、膨胀珍珠岩的质量比为1∶2.5∶0.25∶0.63,水灰比为0.8时,试件28 d的抗压强度>5 MPa、容重<900 kg/m3、导热系数<0.231 W/(m·k),满足轻质保温墙体材料的性能要求。  相似文献   

13.
国内乳化炸药采用的密度调节剂多为膨胀珍珠岩和化学发泡剂,但使用膨胀珍珠岩的炸药密度不易控制,并受其粒度、强度和耐油性能的限制,导致爆轰性能降低。因此,重点研究了利用高性能空心玻璃微珠填充乳化炸药的各项性能。结果表明:高性能空心玻璃微珠可以作为炸药的稳定剂和敏化剂,同时也明显改善炸药的殉爆距离、猛度和爆速性能,微珠的填充量为4%。  相似文献   

14.
脱硫石膏粉煤灰胶结材研究   总被引:1,自引:0,他引:1  
原状脱硫石膏,不需高温加工成半水石膏,与粉煤灰混合后,在水泥、石灰等激发剂的作用下。可形成具有较高强度、较低表观密度、良好抗水性及保温隔热性能的胶结材。研究表明,激发剂、成型水料比是影响脱硫石膏、粉煤灰胶结材性能的主要因素。  相似文献   

15.
以微晶纤维素为改性材料,探究微晶纤维素在不同掺量下对磷建筑石膏力学性能及耐水性能影响,并对其水化产物及微观形貌进行分析。结果表明,微晶纤维素掺量为0.09%时,磷建筑石膏基复合材料的绝干抗折强度、绝干抗压强度、软化系数最优,分别为4.75 MPa、17.65 MPa、0.61,较空白组分别增加36.5%、31.2%、29.8%,吸水率达到最优值18.36%,较空白组降低18.62%。适量微晶纤维素掺入到磷建筑石膏中,能促进磷建筑石膏水化及填充二水石膏晶体的内部空隙,使磷建筑石膏内部结构更加密实,提高磷建筑石膏的力学性能及耐水性。  相似文献   

16.
以球团烟气脱硫石膏作主要原料,添加剂使用丁二酸和十二烷基苯磺酸钠,并使用加压盐溶液的方法研制出抗压强度能达到45 MPa以上的α型高强石膏。分析了球团烟气脱硫石膏的物理及化学性能,转晶剂的含量与种类以及工艺条件对制品性能的影响,揭示了α型高强石膏的形成机理。结果表明:在使用加压盐溶液方法的前提下,温度、转晶剂用量、盐溶液浓度都会对制品的强度产生影响。  相似文献   

17.
以铁尾矿和铜矿渣为原料,成功制备了尾矿渣复合胶凝材料。通过分析球磨时间、胶砂比、料浆浓度、矿渣用量、碱激发剂、水泥熟料、养护条件与胶凝材料力学性能的关系,探讨矿渣胶凝体系制备过程影响因素,确定矿渣胶凝材料制备工艺条件。当矿渣胶凝体系配比为铜矿渣∶石灰∶石膏=80%∶4%∶16%、矿渣胶凝体系球磨时间25min,充填体中矿渣胶凝体系∶水泥熟料∶氢氧化钠∶铁尾矿=20%∶5%∶0.5%∶74.5%、料浆浓度为75%时为充填材料的最好配比,在此条件下,5%水泥填料,试块28d抗压强度为3.62MPa。试验中尾矿渣复合胶凝材料制备研究满足矿山充填胶凝材料的需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号