首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
采用国产萃取剂N902从铜锌铁多金属矿浸出液中萃取分离Cu2+,考察了萃取剂体积浓度、萃取相比、振荡时间、萃取温度对铜萃取率的影响。在试验获得的较佳条件下对H2SO4含量为20.18g/L、30.38g/L的铜锌铁溶液分别进行3级逆流萃取,铜的萃取率分别为98.65%、96.50%,铜与锌、铁分离效果良好;以模拟电积后液为反萃原液进行四级逆流反萃,铜的反萃率约为88%,获得的反萃液可满足铜电积的要求。   相似文献   

2.
从氨性溶液中萃取分离铜、钴的研究   总被引:8,自引:0,他引:8  
陈永强  邱定蕃  王成彦  尹飞  王忠 《矿冶》2003,12(3):61-63,45
研究了不同萃取剂从氨性溶液中分离铜、钴的过程。采用LIX984N作萃取剂,经一级萃取,溶液中铜的萃取率大于99%;用180g/L硫酸溶液对负载有机相进行反萃,经二级逆流反萃,铜的反萃率达99%以上。采用LIX54-100作萃取剂,经过四级逆流萃取铜的萃取率达到99 53%;用30g/L硫酸溶液对负载有机相进行反萃,经一级反萃,铜的反萃率大于99 9%。在上述萃取过程中,钴均不被萃取。  相似文献   

3.
铜萃取剂BK992在湿法冶金中的应用   总被引:6,自引:0,他引:6  
简述铜萃取剂的现状及市场需求,介绍了铜萃取剂BK992在德兴铜矿的对比萃取扩大试验以及在云南东川矿务局科研所的实际应用情况。结果表明:BK992对铜的萃取率85.5%-98.8%,反萃取率53.2%-64.0%,铜的净传递量2.44-3.77g/L,能克服萃取生产运行中絮凝物的影响;没有 降解,稳定可靠。  相似文献   

4.
对萃取方法从硫化镍矿浸出液中萃取分离铜进行了试验研究。结果表明:选取N902作萃取剂,经过两级萃取,铜萃取率平均为98.65%,镍萃取率平均为0.44%;用硫酸反萃,铜反萃率平均为99.54%;铜的回收率较高,可达98.20%。  相似文献   

5.
从生物浸出液中将铜萃取分离是后续制备电积铜的重要步骤。试验结果表明,M5640萃取剂可有效实现生物浸出液中的铜铁分离。在温度20℃,料液pH值1.50、萃取剂浓度30%、萃取相比(浸出液/有机相)4/1、萃取时间1.5min的萃取工艺参数条件下两级逆流萃取铜萃取率大于99.9%。  相似文献   

6.
Mac10 铜萃取剂的性能研究   总被引:4,自引:0,他引:4  
采用国产化工原料合成了Mac10 铜萃取剂, 进行了萃取剂用量、有机相与无机相相比(O/A)、萃取平衡pH 值、萃取动力学、萃取热力学、反萃动力学试验、反萃剂酸度试验。结果表明, Mac10 铜萃取剂具有良好萃取性能, 当萃取剂用量为15%, 相比(O/A)为75%, 萃取平衡pH =3, 萃取时间为3 min, 萃取温度为298 K, 反萃取时间为2 min, 反萃取剂酸度为硫酸浓度180 g/L 时, 萃取率不小于93%, 反萃取率不小于96%, 且水相中Cu2+浓度愈高, Mac10 对铜的萃取性能愈好。  相似文献   

7.
采用Lix984N—煤油—H2SO4萃取体系,从粗硫酸镍溶液中选择性回收铜,研究了初始pH值、萃取剂体积分数、相比O/A等对铜萃取的影响。结果表明,在初始pH值为2.4、萃取剂体积分数为25%、相比O/A为1∶1的条件下,经一级萃取即可获得铜萃取率为98.19%,镍萃取率仅为0.68%的良好指标。以H2SO4浓度为180 g/L溶液作反萃剂,在相比O/A为1∶1条件下经一级反萃,铜的反萃率为99.05%。铜以CuSO4溶液的形式回收,可以作为制备硫酸铜晶体或电积制备电解铜的原料。  相似文献   

8.
采用硫酸浸出-萃取-反萃工艺流程回收电镀污泥中的铜。运用MATLAB拟合了1 mol/L硫酸体系中铜的浸出动力学模型,表明该浸出过程为扩散和表面反应共同控制。在硫酸浓度1 mol/L、液固比15∶1条件下浸出10 min,铜浸出率达到90%。采用萃取-反萃取的方式回收浸出液中的Cu2+,以Mextral® 984H为萃取剂、Mextral® DT100为稀释剂,在溶液pH=2、萃取时间30 min、O/L相比1∶1、萃取剂浓度10%条件下萃取,铜萃取率可达99%;O/L相比1∶1、反萃取时间30 min,用25%的硫酸溶液进行反萃取,铜反萃取率可达95%。此工艺流程铜总回收率可达85%,实现了铜的高效回收。  相似文献   

9.
废印刷线路板微生物浸出液中铜的选择性萃取   总被引:3,自引:0,他引:3  
张承龙  王景伟  白建峰  关杰 《金属矿山》2009,39(10):158-160
对萃取法分离废印刷线路板微生物浸出液中的铜进行了研究。结果表明:选用N902为萃取剂,可很好地选择性萃取浸出液中的铜,在萃取剂浓度为10%,萃取相比为1∶1,萃取搅拌时间为5 min的条件下,铜的萃取率可达99.51%,Cu与Fe的分离系数为2 058;以硫酸溶液为反萃剂对萃取获得的负载有机相进行反萃取,在硫酸溶液浓度为1.8 mol/L,反萃取相比为1∶1,反萃取搅拌时间为5 min的条件下,铜的反萃率可达93.57%。  相似文献   

10.
萃取-电沉积处理含铜氰化废水回收铜和氰化物   总被引:1,自引:0,他引:1  
以季铵盐N263为萃取剂,采用萃取—电沉积工艺对铜氰废液中的铜和氰化物进行回收。结果表明,N263对含氰溶液中的铜氰配合离子有良好的萃取能力,在高碱性条件下其对铜的单级萃取率仍超过90%;饱和负载有机相经反萃可为后续电沉积提供高浓度含铜溶液;提高电沉积温度有利于铜的回收与氰化物的保护;处理后尾液可直接用于氰化浸出。通过萃取—电沉积工艺实现了废水中铜和氰化物的综合回收利用。  相似文献   

11.
仲辛基苯氧乙酸萃取Cu(Ⅱ)的性能研究   总被引:3,自引:0,他引:3  
采用溶剂萃取法 ,研究了新型萃取剂——仲辛基苯氧乙酸 (CA- 12 )从盐酸介质中萃取Cu( )的性能。考察了萃取温度、平衡水相酸度、萃取剂初始浓度、氯离子浓度、铜离子浓度对萃取的影响。实验结果表明 :分配比随平衡水相酸度的增加、萃取剂初始浓度的减小而减小 ;水相中氯离子、铜离子 ( )初始浓度对分配比均有明显的影响 ;仲辛基苯氧乙酸从盐酸介质中萃取 Cu( )的过程为吸热过程 ,并计算得到其过程热 Δ H=12 .77k J/ mo  相似文献   

12.
吴展  李伟  陈志华  宁瑞 《矿冶工程》2013,33(2):105-107
采用高效萃取剂AD100从粗硫酸镍溶液中萃取回收金属铜, 考察了初始pH值、相比(A∶O)、萃取剂体积浓度、反应时间等因素对铜回收率的影响。实验结果显示, 在最优的条件下, 即: 初始pH值为2.0, 相比A∶O=3∶1, 萃取剂体积浓度为25%, 萃取时间5 min, 常温下一级萃取即可回收其中94%以上的铜, 铁、镍的萃取率分别低于0.05%和0.01%。对负载有机相进行反萃, 结果显示, 采用2 mol/L的硫酸在相比为1∶1的条件下一级反萃可回收95%的铜。  相似文献   

13.
为了解咪唑型离子液体--1-十六烷基-3-甲基咪唑双三氟甲磺酰亚胺([C16mim][NTf2])-正戊醇体系对Au(Ⅲ)的萃取效果,研究了不同pH值、不同萃取剂浓度([C16mim][NTf2]与正戊醇的质量体积比,g/L)、不同相比(离子液体相与浸金液相体积比VIL/Vaq,下同)对Au(Ⅲ)的萃取效果,并研究了[C16mim][NTf2]对Au(Ⅲ)的选择性萃取效果。结果表明:[C16mim][NTf2]对Au(Ⅲ)的萃取率随着pH值和相比的增大呈上升趋势;pH<1.6时,Au(Ⅲ)的萃取率随萃取剂浓度的增加而增大;[C16mim][NTf2]对Au(Ⅲ)有明显的选择性萃取效果,在浸金液Au3+浓度为0.05 g/L,相比为1∶3,浸金液pH=1.6~2.0,[C16mim][NTf2]浓度为5 g/L,常温萃取时间为2 min情况下,Au(Ⅲ)萃取率可达90%以上, Au对于Al、Cu、Fe、Zn的选择性系数β分别为466、780、1 118和1 404。  相似文献   

14.
P507从硫酸体系中萃取镓的研究   总被引:3,自引:0,他引:3  
基于P507诸多优点及镓提取现状, 对P507从硫酸体系中萃取镓进行了研究, 分别考察了料液酸度、萃取剂浓度、时间、浓度、温度等因素对萃取与反萃的影响并绘制等温线, 结果表明, 在最佳条件下, 采用15%P507(体积分数)+磺化煤油作为有机相, 按相比O/A=1∶4, 经过3级逆流萃取, 萃取率可达到98.56%, 负载用60 g/L H2SO4溶液反萃, 按相比O/A=5∶1, 经过5级逆流反萃, 反萃率达98.02%, 镓富集近20倍。  相似文献   

15.
湖南某黑钨渣硫酸浸出液(硫酸的浓度为1.8 mol/L)的钪、锆元素含量分别为48.18、138.00 mg/L,为消除锆对萃取钪的影响,在萃取钪前以N235和TBP为复合萃取剂进行了除锆预萃取试验。结果表明:1在复合萃取剂N235、TBP与磺化煤油的体积比为15∶15∶70,有机相与水相相比为1.5∶1,萃取时间为5 min,萃取温度为25℃,萃取振荡频率为120 r/min情况下进行单级萃取,对应的锆、钪萃取率分别为92.03%和0.96%;在硫酸溶液浓度为5mol/L、反萃相比为3∶1、反萃时间为30 min、反萃温度为25℃、振荡频率为180 r/min情况下进行3级反萃,对应的锆、钪反萃率分别为99.23%和98.22%。因此,该工艺可高效地分离锆、钪。2再生有机相对萃原液中锆的萃取率可达91.97%,与新配制萃取剂效果接近,说明再生萃取剂可以循环利用。  相似文献   

16.
研究了用N263从氯化物体系中萃取Zn2+、Fe2+和Fe3+,考察了振荡时间、萃取剂浓度、改性剂浓度、相比(O/A)、盐酸浓度对Zn2+、Fe2+和Fe3+萃取率的影响。结果表明,在有机相组成为20% N263+20%正己醇+60% 260#溶剂油、相比O/A=1 GA6FA 1、振荡时间5 min和25℃条件下,Zn2+、Fe2+和Fe3+的单级萃取率分别为90.97%、0.79%和75.85%,分离系数βZn2+/Fe2+和βZn2+/Fe3+分别为1 260和3.21。经过2级逆流萃取,水相中Zn2+浓度从9.61 g/L降至0.36 g/L,负载有机相采用0.5 mol/L H2SO4反萃,Zn2+的反萃率为41.86%,Fe3+的反萃率大于97%。N263萃取金属离子的机理是阴离子交换反应,计算了萃取反应相关的热力学函数值,结果表明,N263萃取Zn2+为放热反应,Fe3+的萃取反应为吸热反应,常温下Zn2+和Fe3+的萃取反应均可自发进行。   相似文献   

17.
采用t-BAMBP+二甲苯体系对萃铯余液进行萃取分离提铷试验研究,考察了料液碱度、萃取剂浓度、萃取相比、萃取时间等因素对萃取提铷效果的影响。结果表明:在料液碱度为0.4 mol/L,有机相中t-BAMBP体积分数为30%,萃取相比VO/VA=3 : 1,洗涤相比VO'/VA'=4 : 1,常温萃取3 min的条件下,对萃铯余液进行四级萃取四级洗涤萃取模拟试验,铷的萃取率达94.6%。采用多轮萃取可进一步提高反萃液中铷的纯度,为得到高纯度铷盐提供了技术依据。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号