首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 828 毫秒
1.
为了在井下条件实测采动卸压煤体变化的渗透率,从瓦斯抽采的难易程度出发,通过六氟化硫示踪气体现场参数测试和抽采数据统计对被保护层卸压煤体渗透率进行了实测研究。通过对实测结果的分析,认为被保护层卸压煤体渗透率的变化与煤体应力状态有一定相关性,在保护层开采过程中,距离不同的被保护层卸压煤体都经历了渗透率小幅升高-小幅下降-急剧升高3个过程,距离越远的卸压煤层渗透率变化幅度越小,其变化趋势相对保护层工作面距离也越滞后。  相似文献   

2.
《煤矿安全》2017,(1):5-8
为准确判断高瓦斯低透气性煤层瓦斯采动卸压抽采的有效区域,进一步提高瓦斯抽采效果,采用渗流试验和理论分析的方法,研究了煤层采动过程中煤体渗透率随应力的变化规律。结果表明:在受采动影响不同阶段,含瓦斯煤体渗透率随应力变化呈现明显的阶段差异性。在煤体弹性变形阶段,煤体渗透率随应力的增加逐步降低;在煤体达到屈服点至煤体破坏阶段,随着应力的升高,煤体发生塑性变形,煤体内产生采动裂隙,渗透率开始缓慢提升;在煤体破坏后,煤体处于卸压状态,煤体渗透率随着应力的降低大幅提升。最后,通过现场本煤层瓦斯抽采效果分析验证了采动煤体渗流特性试验结果的正确性。  相似文献   

3.
周睿 《煤矿安全》2023,(3):58-66
逆断层区域构造应力与地应力叠加,挤压应力形成的力学特点导致瓦斯积聚,煤体渗透率发生改变,采掘期间容易引起瓦斯涌出异常,甚至发生煤与瓦斯突出事故。为了掌握逆断层区域采动煤体渗透率演化规律,首先开展了逆断层区域采动煤体渗透率测试试验,通过应力加卸载方式模拟逆断层影响下采动煤体应力变化,得出:在峰前阶段,煤体压缩、裂隙闭合,煤体渗透率降低;峰后阶段,煤体应力达到峰值,原有裂隙扩展连通,同时产生新裂隙并出现损伤,煤体渗透率增加并达到最大值;第1组加载方案模拟工作面前方煤体应力集中系数逐渐增大条件下,M1、M2和M3煤样的渗透率分别提高了22.1%、28.0%和36.7%,第2组加载方案模拟模拟工作面前方煤体应力集中系数先增大后减小条件下,M4、M5和M6煤样的渗透率分别提高了23.6%、37.2%和20.8%。然后结合煤体渗透率试验结果,建立了逆断层影响下采动煤体渗透率表征模型,推导出煤体峰前和峰后阶段渗透率计算表达式,用瓦斯吸附/解吸造成煤体体积应变的函数来表示吸附/解吸对煤体裂隙体积的影响,从而更加准确的表征逆断层影响下采动煤体渗透率。最后将渗透率模型导入COSMOL软件,结合新春煤矿1503工作面F4逆断层现场情况进行模拟计算,得出随着与逆断层距离减小,煤体应力集中系数增大的情况下,煤体瓦斯压力和渗透率峰值均逐渐增大,容易造成瓦斯涌出异常,需要加强瓦斯浓度监测。  相似文献   

4.
工作面采动应力场诱发煤体初始破坏,作为突出发生的必要条件,揭示其细宏观动态力学过程依然存在巨大挑战。基于采掘工作面典型突出事故,构建了采动煤体损伤失稳过程多变应力载荷路径。采用PFC3D离散元软件开展了多工况多尺度下煤体损伤失稳可视化模拟,揭示了采动煤体损伤失稳动态响应规律,阐明了采动煤体裂纹动态演变行为,并基于采动下地应力诱使煤体初始破坏规律提出了突出防治技术展望。结果表明:采动煤体随主应力加卸载速率的变化,其破坏类型和破坏强度差异明显。应力渐进卸载过程,煤体宏观破断面呈现单斜面或共轭剪切面形式,且随卸载速率增加,煤体破坏强度降低。随应力双向同等速率渐进加载,单向突然卸载或保持一定残余应力状态下呈现宏观破断面与中间主应力方向平行,且卸载程度增加或残余应力降低引发煤体破坏强度降低。不同应力载荷下,煤体破坏过程随剪切和张拉裂纹先后出现,呈现张剪破坏。在采动煤体损伤引发失稳过程中裂纹动态演变过程呈现间歇性、渐进性和阵发性复合特征。裂纹整体发育过程可表征为初期新裂纹出现(间歇性-突增阶段)、裂纹扩展(渐进性-慢增阶段)以及贯通并扩展(阵发性-慢增阶段)、整体撕裂煤体过程(骤增阶段)。煤体力学...  相似文献   

5.
首先对煤体渗透率的经典模型进行了简介,其次结合采动过程中煤体内的力学变化机制及渗透率的控制因素提出了采动应力下煤体渗透率模型构建过程中的关键问题,并就每个关键问题的研究进展进行了总结和分析。关键问题包括以下3个方面:采动煤体各向异性特征、采动煤体损伤破裂特征和煤体吸附解吸特征的表征方法。其中,各向异性特征的煤体渗透率模型可划分为有效应力变化和几何参数变化进行表征的两类,有效应力变化角度的建模结果基本为指数型函数、几何参数变化角度的建模结果多为3次方的幂函数;损伤破裂特征的煤体渗透率模型被归纳为本构方程中含损伤变量和渗透率表达式中含损伤变量的2类,本构方程中含损伤变量的模型具有更广的适用范围,渗透率表达式中含损伤变量的模型能够更加直观的表示渗透率和影响因素之间的数量关系;在煤体吸附解吸特征的表征方法中对基于吸附热力学而建立的煤体吸附应变表达式进行了总结,同时指出在煤体渗透率模型构建中Langmuir方程形式的吸附应变表达式应用最为广泛。然后,对采动应力下煤体渗透率模型的研究进展进行了介绍,将采动应力下煤体渗透率模型归纳为有效应力型、几何参数型和系数拟合型的3类,依次对3类模型中代表性成果的表达式及应用情况进行了概述。最后,从每个关键问题的角度对后续构建采动应力下煤体渗透率模型的研究进行了展望。  相似文献   

6.
成小雨  程成  陈龙  高涵  赵刚 《煤矿安全》2022,(12):115-120
为了改进含瓦斯煤多场耦合条件下的基础实验研究,自主研发了含瓦斯煤多场耦合渗流解吸实验系统,主要由恒压自动充气吸附单元、煤样瓦斯“面扩散”渗流解吸装置、瓦斯抽采单元、应力加卸载单元、非接触式应变测量单元、声发射监测单元、多参监测单元和实验系统管理软件组成;并应用该系统进行了煤体甲烷吸附解吸实验和含瓦斯煤受载过程中应力-应变-渗透规律研究。研究表明:煤体的吸附和解吸均符合指数函数,解吸率先快速增大后缓慢增加最终达到了平衡状态;同一时刻,随着粒径的减小,煤体吸附平衡时间越短、解吸率和解吸总量越大;含瓦斯煤应力-应变-渗透过程呈阶段特性,煤体渗透率在压密阶段快速降低;弹性变形阶段应变快速增大,渗透率缓慢降低并达到最小值;屈服阶段渗透率缓慢增加,峰后软化阶段渗透率快速增大。  相似文献   

7.
深部资源开采中,采动应力下煤体渗透率演化规律成为煤炭开采理论研究的热点之一。通过对煤体常规三轴渗流实验和采动应力路径下渗流实验对比分析,发现深部含瓦斯煤体在采动应力路径下其渗透率-体积应变异于常规三轴渗透实验。煤体常规三轴实验主要以三向应力加载为路径,而煤体在不断采出过程中其应力路径主要表现为特定方向加载其他方向卸荷的过程,可凝练为加轴压卸围压的应力路径,而应力-应变分析的起始点为静水压力状态,这必然引起煤体力学物理性质异于三向加载条件的行为。在采动应力条件下的渗透率-体应变空间内,以煤体体应变扩容点为界,当体应变达到扩容点后,随着体应变从压缩变形转换为膨胀变形,渗透率呈现出降低、稳态、增加的过程。为了定量地描述深部煤体渗透率在采动破坏或流变失稳过程中先减小后增大的行为,基于在体积应变空间内真实渗透网络是所有可能渗透网络中最优演化形式的假设,建立以渗透率、体积应变为变量的泛函关系,从而得出由体积应变表示的渗透率表达式。考虑深部煤体流变过程,将分数阶微积分理论推导的煤体体积蠕变方程代入渗透率函数中,得出以轴向应变为自变量的渗透率表达式。根据已有的实验数据对渗透率模型进行验证,结果表明:基于最优渗透网络得出的渗透率模型能很好地描述煤体渗透率在破坏过程中的演化规律,同时也可拟合流变过程中渗透率的变化趋势。  相似文献   

8.
为研究采煤工作面前方煤体卸压增透效应,提高煤体卸压瓦斯抽采量,分析了采煤工作面前方采动煤体变形破坏与渗透率变化过程的相关性,在工作面前方卸压区,煤体发生滑移破坏,有明显的扩容及卸压增透效应。现场实测了工作面前方煤体应力及钻孔瓦斯流量随工作面推进过程的变化规律,确定了支承压力区、卸压区分布范围。在卸压区内,因煤体渗透率增大,钻孔瓦斯平均流量提高2~3倍。基于工作面前方煤体卸压增透效应,根据不同钻孔失效距离及卸压区宽度,给出了不同偏角(钻孔与垂直煤壁方向夹角)下的预抽钻孔卸压瓦斯抽采量计算式。分析结果表明:钻孔偏角越大,卸压瓦斯抽采量越大。结合某矿N2105工作面现场条件进行计算,得出钻孔偏角最大可为21.4°,相比原垂直煤壁钻孔,单孔卸压瓦斯抽采量可增加978.5 m3,预期可有效提高本煤层瓦斯抽采率。  相似文献   

9.
采动煤体卸荷过程中,因原始及新生裂隙持续扩展而产生损伤破坏,导致渗透率急剧升高,经典煤储层应力-渗透率模型适用范围仅限于煤体线弹性变形阶段,无法反映煤体峰后渗透率的变化规律。借助在描述非线性力学行为方面具备独特优势的分数阶导数,通过已有试验和理论分析,基于现有应力-渗透率模型提出的适应于采动卸荷煤体的双参数分数阶渗透率模型,当阶数γ=0时,分数阶渗透率模型退化为经典的S-D模型,表明S-D模型是分数阶渗透率模型的一种特殊情形,当阶数γ=1时,分数阶渗透率模型表现为S-D模型的幂函数形式,展现峰后渗透率的强非线性变化特征,从而将经典S-D渗透率模型的适用范围拓展至峰后阶段。然而,双参数分数阶渗透率模型参数的物理意义不尽明确,为此,根据改进的Mazars损伤准则,获得了煤体卸荷过程中损伤变量的演化规律,借此探讨了所建渗透率模型中2个参数的关系,得到了只含损伤变量D的单参数分数阶渗透率模型,将模型中的静态参数修正为动态参数,符合损伤扩容过程中煤体割理压缩系数不断变化的事实,弥补了现有应力-渗透率模型中所引入的静态参数与损伤变量不关联的缺陷,使其物理意义更加清晰。将分数阶渗透率模型应用于充填采...  相似文献   

10.
根据上覆岩层在采动条件下渗透率随应力变化的分布特点,建立了渗透率-应力模型,并通过fish语言将渗透率-应力模型镶嵌到FLAC3D软件,对采动条件下上覆岩层的渗透率与应力变化规律进行了模拟,同时以渗透率变化来判定采动卸压带的高度。结果表明:岩层采动后,渗透率随应力增大而减小;卸压带高度随开采距离增加而增加,但最后却趋于某一恒定值;开采保护层能很好地增强被保护层煤岩层的渗透性,能有效提高被保护层瓦斯抽采效率;被保护层开采后,其采空区上覆岩层的渗透率是保护层开采时上覆岩层渗透率的3倍左右。  相似文献   

11.
载荷作用下煤体变形与渗透性的相关性研究   总被引:4,自引:0,他引:4       下载免费PDF全文
祝捷  姜耀东  孟磊  赵毅鑫 《煤炭学报》2012,37(6):984-988
利用含瓦斯煤热流固耦合三轴伺服渗流装置,进行了不同气体压力作用下煤样全应力应变过程的瓦斯渗流实验。实验结果显示,煤样渗透率与变形之间存在内在关联,渗透率变化呈现阶段性特点。基于考虑气体吸附性的含瓦斯煤有效应力,建立了加载煤样变形与渗透率的相关性模型,研究受荷煤样变形与瓦斯渗流的相互关系。理论分析表明:当应力控制边界条件时,渗透率与煤样变形密切相关;煤样渗透率的变化受到有效应力、煤样变形模量、孔隙率和气体吸附性的共同作用;有效应力系数是联系煤样变形和渗透率的关键参量。由于理论计算结果与实验曲线较为接近,因此模型反映了不同瓦斯压力下加载煤样变形与渗透率变化的基本特征。  相似文献   

12.
王海成 《中国煤炭》2012,38(2):73-75
根据新集一矿已有的工程地质资料和科研成果建立模型,采用FLAC3D进行了数值模拟,并结合现场观测,研究了小错距上下煤层工作面反向同采时,上工作面巷道围岩应力、塑性区和变形情况,研究结果表明,上工作面巷道围岩变形在两工作面推进过程中呈现两个阶段的变化,该巷道围岩一定范围内发生塑性破坏是其围岩变形不断增长的主要原因,因此上工作面巷道支护的关键是加固其围岩的塑性破坏区,提高围岩的自承载能力.  相似文献   

13.
蔡永博  王凯  袁亮  徐超  付强  孔德磊 《煤炭学报》2019,44(5):1527-1535
为研究保护层开采过程中下伏煤岩体卸荷损伤变形演化特征,运用FLAC~(3D)数值模拟方法及现场实验测量手段,以山西保德煤矿实际情况为研究背景,对保护层开采过程中下伏煤岩体应力、变形、塑性演化规律进行了研究及验证。研究表明:保护层开采过程中,被保护层应力呈增大—减小—增大的变化规律,下伏煤岩体应力在空间上呈现出明显的"O"形应力分布规律;受保护层采动影响,下伏煤层测点经过原岩应力、应力集中、采动卸压、应力恢复4个阶段;最大应力集中系数与最小卸荷比为固定值,且出现时间相同,工作面前方应力集中系数与工作面后方卸荷比均呈往复性变化,变化周期与工作面来压周期相关;本文实例中,最大应力集中系数约为1. 32,此时测点受到的z向应力值达到最大;最小卸压比约为4. 4%,此时测点受到的z向应力值达到最小,卸压效果最好;受应力变化影响,被保护层呈压缩—恢复—膨胀—回缩的基本变化规律,最终状态保持一定的膨胀变形,与应力分区相对应,根据不同变形特征可将下伏煤层分为原岩状态区、压缩变形区、卸压膨胀区、变形恢复区;本文实例中11号煤层最大膨胀变形量约为0. 6%,此时测点裂隙最为发育,增透效果最好,有利于瓦斯卸压抽采;受应力变化影响,下伏煤岩体塑形区域范围在空间上呈先xyz三向增大—x轴方向单向增大y轴z轴2个方向稳定的变化规律;随着工作面的回采,被保护层煤体塑性区范围在x轴方向不断增加;通过实测保德煤矿81307工作面回采过程中下伏11号煤地应力、膨胀变形量,对深部煤岩体卸荷损伤变形演化特征数值模拟结果进行了验证,下伏11号煤地应力、膨胀变形量变化规律与数值模拟规律较为吻合。  相似文献   

14.
煤岩变形力学特性及其对渗透性的控制   总被引:2,自引:0,他引:2  
通过煤岩力学试验研究了煤岩物理力学性质和煤岩全应力-应变过程中的渗透规律。研究结果表明:煤的力学强度相对煤层顶底板岩石具有低强度、低弹性模量和高泊松比特性,易于产生塑性变形;在全应力-应变过程中具有明显应变软化现象的煤样,在微裂隙闭合和弹性变形阶段,煤岩体积被压缩,煤岩渗透率随应力的增大而略有降低或渗透率变化不大;在煤岩的弹性极限后,随着应力的增加,煤岩进入裂纹扩展阶段,煤岩体积应变由压缩转为膨胀,煤岩渗透率先是缓慢增加然后随着裂隙的扩展而急剧增大;在煤岩峰值强度后的应变软化阶段煤岩渗透率达到极大值,然后均急剧降低,峰后煤岩的渗透率普遍大于峰前。在全应力-应变过程中应变软化现象不明显或者具有应变硬化现象的煤样,煤岩全应力-应变过程中最大渗透率主要发生峰值前的塑性变形阶段,在煤岩峰值强度后的应变硬化阶段,随着煤岩应力的增大,煤岩渗透率减小,峰后煤岩的渗透率普遍小于峰前。  相似文献   

15.
田坤云 《煤炭工程》2014,46(4):71-73
作为最有效的区域防突措施,王行庄煤矿进行了保护层开采的实践,通过对煤层瓦斯压力、瓦斯含量、透气性系数的变化分析,考察了上保护层开采后对被保护层的保护效果,保护层开采前后各考察指标变化表明保护效果良好。针对在上保护层开采过程中底板煤岩体裂隙分布研究较少的情况,通过数值模拟,得到上保护层开采后底板裂隙带分布,分为底板变形破坏带和底板塑性变形带,同时划分了"上三带"各带高度。  相似文献   

16.
李波波  李建华  杨康  任崇鸿  许江  张敏 《煤炭学报》2019,44(4):1076-1083
煤矿开采深度不断增加,煤层瓦斯含量升高导致动力灾害逐渐增多,给煤矿安全开采带来严峻考验。对于瓦斯在煤层中流动的研究一直以来都备受关注,其中渗透率正是影响煤层中瓦斯流动的关键参数之一。因此,为准确模拟开采环境变化导致的煤岩变形及渗透特性变化,利用含瓦斯煤热-流-固耦合三轴伺服渗流装置,开展不同含水条件下孔隙压力升高过程中煤岩渗透特性的试验研究,建立考虑含水率的吸附方程和吸附-渗透率模型,探讨含水率和孔隙压力共同作用对煤岩变形及渗透特性的影响。研究结果表明:①孔隙压力升高过程中,径向应变及轴向应变随孔隙压力的升高均呈降低趋势,瓦斯流量的变化呈上升趋势,煤基质由于吸附瓦斯产生膨胀变形,体积应变逐渐减小。②当含水率恒定时,随着孔隙压力的升高,瓦斯吸附量随孔隙压力增大先增大而后趋于平缓,产生的吸附变形的变化趋势与其相同;当孔隙压力恒定时,煤岩的吸附量和吸附变形均随着含水率的增大而减小。③在恒定含水率条件下,煤岩渗透率曲线随孔隙压力的升高先减小后趋于平缓;而在相同的孔隙压力条件下,随含水率的增加,煤岩渗透率整体逐渐减小,而且含水率越大孔隙压力对渗透率的影响越弱,水分子对渗透率的影响越强。④构建了考虑含水率的吸附量计算方程,并在此基础上进一步构建考虑含水率煤岩吸附-渗透率模型,其中所计算的渗透率值与试验所测结果基本一致,反映了煤岩渗透率变化规律。  相似文献   

17.
为研究采动条件下工作面前方煤体应力变化规律与扰动破坏特征,以平煤十二矿己15-31030工作面为研究对象,通过现场原位实验与三维数值模拟研究,给出了不同应力状态下的扰动强度判别指标,以煤体主应力为中间量,将采动应力与工作面前方煤体破坏特征联系起来,得到了采动应力演化规律及采动应力路径下煤体变形特征。原位单轴实验表明工作面前方煤体采动应力不是单纯的增加,而是经历了原岩应力、缓慢上升、急剧升高、突然卸荷4个状态,而三维数值实验得出侧压力系数大小与扰动状态具有一定的相关性。根据已有的应力路径,数值再现了单向、三向采动应力状态下煤样的变形规律和塑性分布状态。  相似文献   

18.
田延哲 《煤矿安全》2021,(3):222-227
为研究高陡山体下煤层重复采动诱发岩质斜坡变形破坏过程,采用离散元数值模拟的方法,建立了高陡地形条件下煤层采动数值计算模型,从水平位移云图和纵向位移云图来分析煤层重复采动诱发岩质斜坡变形的渐进破坏过程。得出高陡山体下重复采动诱发坡体崩塌经历了3个阶段,即煤层初始变形阶段、重复采动导致坡体不均匀沉陷开裂阶段,坡体整体失稳垮塌阶段;同时得出坡体的不均匀变形引起整个坡体不同位置产生不同形式的破坏,坡表的最终失稳形式有滑坡和崩塌2种,主要由坡体的原始地形坡度和地层岩性决定。  相似文献   

19.
蒋长宝  黄滚  黄启翔 《煤炭学报》2011,36(12):2039-2042
以重庆松藻煤电有限责任公司的典型煤与瓦斯突出矿井--打通一矿7号煤层为研究对象,利用自行研制的“含瓦斯煤热流固耦合三轴伺服渗流试验装置”,进行了不同初始围压和不同瓦斯压力组合条件下,含瓦斯煤多级式卸围压变形破坏及渗透率演化规律实验研究。研究结果表明:开始卸围压后,煤岩并不是立即被破坏失稳,而是维持在σu1一段时间,经历n级卸围压作用后才会失稳;在煤样失稳前,每一级卸围压过程中煤样的变形和渗透率变化速度都是不一样的,均呈加速增大的趋势;在每一级围压恒定阶段,随着围压的降低,煤岩的蠕变速度和渗透率也均是加速增大的;卸围压阶段比围压恒定阶段变形和渗透率增大速度快得多;无论是卸围压过程还是恒定围压阶段,围压降低引起的横向变形的变化速度均大于轴向变形的变化速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号