首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为揭示烧结钛精矿气基还原机理,在CO和N_2体积分数分别为30%和70%的还原气氛条件下,开展了烧结钛精矿等温气基还原试验研究,还原温度分别为800、900、1 000℃,对气基还原动力学进行了分析。结果表明:烧结钛精矿中铁氧化物还原度随还原温度和时间增加而增加,整体还原度偏低,还原度接近70%。烧结钛精矿在800~1 000℃气基还原大部分时间内(140 min)受界面化学反应控制,反应活化能为46.97 kJ/mol;反应后期(140 min)受扩散控制,反应活化能为99.27 kJ/mol。烧结钛精矿碳热还原过程物相转变历程为:Fe_2TiO_5→Fe_2TiO_4→FeTiO_3。相同还原时间,烧结钛精矿还原样品中金属铁粒尺寸随温度升高从4.46μm增至30.13μm。  相似文献   

2.
以焦粉为还原剂,开展了氧化钛精矿含碳球团等温碳热还原试验研究,采用积分法进行了碳热还原动力学分析,还原温度分别为1 000、1 100、1 200、1 300℃。氧化钛精矿中铁氧化物还原度随还原温度和时间增加而增加,还原度可达91%。氧化钛精矿在1 000~1 300℃固相还原前期(60 min)受界面化学反应控制,反应活化能为51.23 k J/mol;反应后期(60 min)受扩散控制,反应活化能为93.53 k J/mol。氧化钛精矿碳热还原过程物相转变历程为:Fe2Ti O5→Fe3Ti3O10→Fe Ti O3,物相转变过程增加颗粒内部空隙,增加还原比表面积,改善还原过程气体扩散条件,加快还原初期化学反应速率。  相似文献   

3.
《钢铁钒钛》2021,42(1):83-92
通过热力学软件Factsage7.3对CO/H_2还原CaSO_4进行热力学平衡计算。计算得到CO/H_2还原CaSO_4生成CaO和SO2的最佳理论条件为:反应温度1 100℃以上、摩尔比n(CO)∶n(CaSO_4)=n(H2)∶n(CaSO_4)=1,过高或过低的还原剂摩尔比均不利于CaSO_4的还原脱硫,同时温度越高越有利于CaSO_4的CO/H_2还原脱硫。根据Factsage7.3计算结果,以N2作为混合气体,在高温炉中进行了15 g烧结烟气脱硫石膏的CO/H_2还原脱硫试验,考察CO/H_2浓度、反应温度、反应时间、还原气体流量对脱硫石膏CO/H_2还原脱硫的影响。结果表明:有利于脱硫石膏CO还原脱硫的最佳条件为CO浓度5%、反应温度1 050℃、反应时间30 min、气体流量5 L/min;有利于脱硫石膏H2还原脱硫的最佳条件为H2浓度8%、反应温度1 050℃、反应时间30 min、气体流量为5 L/min,且CO分解还原脱硫效果较H2还原脱硫的效果要好。试验发现在900℃以上时脱硫石膏有烧结现象发生,且随温度升高烧结程度更重,影响了CO/H_2的还原脱硫效率。  相似文献   

4.
我国钒钛磁铁矿资源丰富,但综合利用难度大,现有工艺仍存在一些问题,工艺流程还有待完善和革新。气基竖炉直接还原-电炉熔分新工艺为钒钛磁铁矿资源清洁高效综合利用提供了新途径。以含钒钛的铁精矿为原料制备氧化球团,模拟气基竖炉直接还原条件,研究了还原气组分和温度对球团的还原进程、还原膨胀以及还原强度的影响。结果表明:以钒钛铁精矿为原料,配加1%膨润土,在1 250℃下焙烧20 min后,所制备氧化球团性能良好,具有较高的抗压强度。在恒定还原气组分(纯H2、H2/CO=2.5、H2/CO=1、H2/CO=0.4和纯CO)和温度(850、900、950和1 000℃)下,钒钛铁精矿球团还原速率快、还原膨胀率小(<20%),可满足气基竖炉直接还原工艺要求。煤制气-气基竖炉直接还原凭借其能耗小、环境友好、单机产能大、产品质量好等优点,将在钒钛磁铁矿资源高效清洁综合利用领域得到发展。  相似文献   

5.
在自制的公斤级高温流化床中研究了CO还原1~3 mm矿粉的还原行为。随着时间的增加,样品的还原率增加,气体利用率却在下降,说明还原前期反应速度快,后期反应慢;温度越高,样品的还原率越大,气体的利用率越高,但随着还原时间的增加,差距在逐步缩小。当还原温度为850℃时,前20 min的还原率为80%,气体利用率为8%左右,这说明高温下,CO还原1~3 mm铁矿粉的反应速度是很快的。温度越高,表观反应速率常数越大,而且增加的幅度也越来越大;随着气速的增加,铁矿粉的还原率增加,并且几乎成线性关系,表明高温下,使用CO气体作为还原剂时,可以允许更高的气速,从而可以提高设备的生产效率。随着料层高度的增加,金属化率与还原率不断下降,然而气体利用率却在不断升高。试验中CO还原1~3 mm铁矿粉时的表观活化能为59.11 kJ/mol。  相似文献   

6.
针对生物质碳基还原动力学条件差、还原效率低的问题,将生物质裂解产物焦油作为还原剂,与铁矿粉混合还原炼铁。通过还原试验,对铁矿粉预热温度、还原温度、焦油与铁矿粉当量比等影响因素进行探讨。结果表明:铁产品质量随预热温度升高先上升后下降,在预热温度为450℃时达到最高;增加反应温度和铁矿粉与焦油当量比,能提高铁产品的还原度。当采用最佳工况(450℃预热30min,焦油与铁矿粉质量比1.2∶1,1 000℃下还原45min),可得到还原度为72.6%的还原铁产品。  相似文献   

7.
俞晓  李秋菊  任东霞  洪新 《特殊钢》2010,31(4):7-10
中位粒径1.78μm的不锈钢粉尘的成分为(%):41.0Fe、3.3Ni、24.8O、2.6Cr、4.1Ca、3.6Zn,其主要相组成为Fe3O4、FeO·Cr2O3、CrO。研究了气固比(1.6~4.0 L/g) 、还原时间(50~300 s) 、H2-CO混合气体中CO的含量(20%~60%)和温度(500~700℃)对不锈钢粉尘还原的影响。正交试验结果表明,四个因素中气固比影响最为显著,其余依次为还原混合气体成分、还原时间和反应温度。气固比4.0 L/g,600~700℃, CO含量15%~25%,5 min内不锈钢粉尘的还原率可达50%。  相似文献   

8.
庞建明  郭培民  赵沛  曹朝真 《钢铁》2009,44(2):11-0
 用非等温热重分析法对氢气还原不同粒度细微氧化铁的动力学进行了研究。研究表明:铁矿粉粒度越小,起始反应温度越低,反应速度越快,反应达到平台期时所对应的还原率越高;平均粒度为3.5 mm的铁矿粉在400 ℃还原反应开始,700 ℃左右开始反应加快,达到平台期时的还原率为77%,而平均粒度为2 μm的铁矿粉在100 ℃已经开始反应,350 ℃反应加快,达到平台期时的还原率为98%,而且在600 ℃时还原率就达到了100%;铁矿粉粒度从3.5 mm降到2 μm后,还原反应的表观活化能从73.3 kJ/mol降低到30.46 kJ/mol;同时通过分析氢气还原氧化铁的反应机理得出,内扩散和界面化学反应均对整个反应过程起限制作用。  相似文献   

9.
为了探索含钒钛海滨砂矿用于气基竖炉还原的可行性,以该砂矿为原料造球,在1 250℃焙烧20 min制得氧化球团的抗压强度为2 099 N/个,还原性指数77.8%,低温还原粉化指数(+3.15 mm)92%,还原膨胀指数7.5%,还原粘结性指数10.4%。氧化球团950℃还原180 min,H_2/CO为1.5时球团还原率89.4%,H_2/CO为6时球团还原率92%,100%H_2时球团还原率96%。氧化球团各项性能指标良好,能够满足气基竖炉工艺的要求。  相似文献   

10.
用热失重法及通过渣-金界面反应研究了含碳铬矿球团及熔渣中铬氧化物的还原速度。含碳铬矿球团还原速度的限制环节为CO在铬矿表面上的析碳反应和碳通过产物层向内部的扩散,通过动力学分析及实验结果得出还原速度与温度和球团矿粉粒度的关系式。在1200~1300℃,求得碳的扩散系数为10~(-12)~10~(-11)cm~2/s,析碳反应速度常数为10~(-7)~10~(-6)cm/s。球团中添加CaCl_2或CaF_2能提高球团的还原速度。铬氧化物在MgO-Al_2O_3-SiO_2-CaO渣中与碳饱和铁液中溶解碳反应,其还原速度与渣中CrO活度的一次方成正比。还原速度的限制环节为CrO由渣中向渣-金界面的传递,在1600~1670℃,得传递系数数为10~(-5)~10~(-4)mol/min·cm~2。还原速度随熔渣的CaO/SiO_2比值提高及渣中GaF_2含量的增加而加快。  相似文献   

11.
氧化铁矿微粉气相还原机理研究   总被引:3,自引:0,他引:3  
李秋菊  王道净  洪新 《钢铁》2008,43(7):22-0
 应用失重技术研究了450~600 ℃下氢气还原超细氧化铁粉过程。采用扫描电镜和X射线来分析还原过程中的结构及物相变化。研究结果表明,由于纳米颗粒的尺寸效应,反应初始速率增加。不同温度下,还原速率随着还原程度增加而减小。还原过程的速率控制过程通过反应过程中的部分结构变化、活化能及气固反应数学模型确定。结果表明,H2还原超细氧化铁的初始阶段由化学反应过程控制,在反应后期阶段,反应过程是受化学动力学和内扩散的混合控制。  相似文献   

12.
研究了低温还原微纳米氧化铁粉的还原特性与机理。用高能球磨法获得的微纳米氧化铁粉在280~400 ℃内用氢气还原,并测定还原后粉末中氧、计算氧化铁粉末的还原率,通过扫描电子显微镜来观察还原铁粉的形貌;找出了氧化铁粒度、还原温度和还原时间等参数对氧化铁还原率、铁粉粒度和粒度分布、铁粉形貌等的影响。从动力学的角度,探讨了粉末细化对低温氢气还原氧化铁活化能的影响。研究结果指出,微纳米氧化铁粉的还原反应遵循吸附自动催化理论,反应动力学遵循界面化学反应理论,研究获得了反应所对应的反应机制函数和相应的动力学方程。  相似文献   

13.
研究了低温还原微纳米氧化铁粉的还原特性与机理。用高能球磨法获得的微纳米氧化铁粉在280~400 ℃内用氢气还原,并测定还原后粉末中氧、计算氧化铁粉末的还原率,通过扫描电子显微镜来观察还原铁粉的形貌;找出了氧化铁粒度、还原温度和还原时间等参数对氧化铁还原率、铁粉粒度和粒度分布、铁粉形貌等的影响。从动力学的角度,探讨了粉末细化对低温氢气还原氧化铁活化能的影响。研究结果指出,微纳米氧化铁粉的还原反应遵循吸附自动催化理论,反应动力学遵循界面化学反应理论,研究获得了反应所对应的反应机制函数和相应的动力学方程。  相似文献   

14.
The reduction behaviour of hematite compacts by H2-CO gas mixtures was investigated at 1073-1223 K. The total porosity, pore size distribution and surface area of the compact was measured using mercury pressure porosimeter. The reduction tests were carried out using Cahn balance. The reduction behaviour could not be described in terms of a single rate-determining step; the reduction process was initially controlled by the chemical reaction at the oxide/iron interface, controlled by the intraparticle diffusion through the reduced layer towards the end of reduction, and the mixed control, in between. Over the whole range, the reduction rate decreased with CO content in the gas mixture. The chemical reaction rate constants were two to three times higher for H2 reduction than those of CO reduction, and the effective diffusivities of H2 reduction were three to four times higher than those of CO reduction. Values of activation energy for chemical reaction were found to be 19.8-42.1 kJ/mol depending on the gas compositions; 100% CO showing the lowest.  相似文献   

15.
 Gaseous reduction kinetics of the high phosphorus iron ore fines from Hubei in China and effect of microwave pretreatment on the gaseous reduction behavior were studied. Gaseous reduction kinetics were investigated by TG (Thermogravimetric) methods using LINSEIS STA PT 1600 thermal analysis equipment. Microwave pretreatments to the ore fines with four power levels were performed using a high temperature microwave reactor. Its effect was examined by TG methods and its mechanism was analyzed by SEM (scanning electron microscope) and EDS (energy dispersive spectrometer). Gaseous reduction tests were carried out using a tubular furnace. Results of kinetic study indicate that controlling step of the gaseous reduction of the ore fines is a mixing control of gas internal diffusion and interface chemical reaction when reduction fraction is less than 0. 8 and is solid state diffusion when reduction fraction is more than 0. 8. Microwave pretreatment of the ore fines could change the pore structure of the oolitic unit to generate cracks, fissures and loose zones, which promotes reduction in the early stage and delays the occurrence of sintering. Gaseous reduction tests show in the condition that the ore fines are pretreated with a microwave power of 450 W for 4 min and reduced under temperature of 1273 K, the gaseous reduction of the ore fines could be apparently intensified. Using CO or H2 as a reductant and ore fines being reduced for 1. 5 to 2 h , increase of metallization rate of the ore fines is 10% to 13%.  相似文献   

16.
我国铜渣资源储量丰富,渣中含有多种有价金属,具有很高的二次利用价值.为了揭示铜渣提铁的碳热还原机理,以无烟煤为还原剂,进行铜渣含碳球团等温还原实验,并对其进行动力学分析.实验设定的还原温度为1 000 ℃、1 050 ℃、1 100 ℃、1 150 ℃和1 200 ℃,碳氧比即nc/no=1.0.结果表明,对于铜渣含碳球团等温还原实验,温度对反应速率有重要影响;该反应主要限速环节为气相扩散,活化能数值为118.059 kJ/mol;对其进行阶段性动力学分析,其活化能在61.54~146.98 kJ/mol范围内,且活化能的数值随着还原度的变化而变化,具体表现为:第1阶段反应活化能数值较小,原因可能是该阶段反应刚开始,原铜渣中含有一些铁氧化物(Fe3O4)先参与了反应;第2阶段反应活化能较高,此时原铜渣中的铁氧化物已基本反应,铁以橄榄石的状态存在,且橄榄石呈液态,致使球团孔隙度降低,气体在球团内的扩散受阻.   相似文献   

17.
为了过程优化和提高反应的还原度,设计了两步法试验。试验采用的是微型流化床反应器,能够确保反应器空间中的每一个颗粒都处于相同的温度和气体浓度。试验结果表明,预还原阶段形成的颗粒表观形貌对还原度有着重要的影响,终还原阶段中的CO在混合气体中所占的比例直接影响着还原速率的大小。合理的控制还原反应速率,延长反应时间,有利于还原度的提高。当CO在混合气体中所占的比例为83%时,巴西矿粉的还原度达到了88%。  相似文献   

18.
Compacts made from pure wüstite and compacts doped with 2% MgO were annealed at 1000°C for 3 hrs in 50%CO‐CO2 gas mixtures. The annealed samples were isothermally reduced at 800‐1100°C in H2 gas. Selected samples were isothermally reduced at 1000°C with pure CO and 50%H2‐CO gas mixture to investigate the effect of gas composition on the reduction processes. The oxygen weight loss resulting from the reduction of the samples was recorded as a function of time. X‐ray diffraction (XRD), scanning electron microscopy (SEM), optical microscopy and porosity measurements were used to characterize the annealed and reduced samples. Magnesio‐wüstite (MgO·FeO) phase was formed during the annealing of MgO doped wüstite. The MgO·FeO in turn decreased the porosity of the annealed doped samples compared to pure wüstite compacts. The influence of temperature, gas composition and MgO content on the reduction behaviour and the morphology of the annealed samples was investigated. The values of the apparent activation energy were calculated from Arrhenius plots and correlated with the reduction mechanism. The reduction rate increased with reaction temperature. In doped compacts, the MgO·FeO phase was not completely reduced both at lower reduction temperature (800°C) and during reduction with pure CO. From the activation energy values, the initial reaction stage was controlled by the combined effect of chemical reaction and gas diffusion while solid state diffusion controlled the final stage of reduction. Morphologically, metallic iron was formed in different shape structures under the effect of MgO addition and reduction conditions.  相似文献   

19.
就冶金反应工程学中的质量传输及化学反应在金属粉末还原过程中的应用进行了初步探讨。指出:气-固反应是常见的金属粉末还原反应之一;常用的还原设备,如管式电炉,可看成活塞流反应器,并用活塞流反应器的物质恒算方程来描述;气固间的对流传质可用舍伍德数、雷诺准数和施密特数的组合来表征,固相内气体扩散的质量通量是孔隙率、孔的曲折度、有效扩散系数和浓度梯度的函数,固相内的气固反应可用缩小的未反应核模型来描述;粉末物料的还原程度取决于固体内的气体扩散及气固反应,哪一个过程进行得最慢,则该过程就是全过程的控制环节。  相似文献   

20.
The reduction kinetics and mechanisms of hematite ore with various particle sizes with hydrogen at low temperature were studied using the thermogravimetric analysis. At the same temperature, after the particle size of powder decreases from 107.5 μm to 2. 0 μm, the surface area of the powder and the contact area between the powder and gas increase, which makes the reduction process of hematite accelerate by about 8 times, and the apparent activation energy of the reduction reaction drops to 36.9 kJ/mol from 78.3 kJ/mol because the activity of ore powder is improved by refining gradually. With the same reaction rate, the reaction temperature of 6. 5 μm powder decreases by about 80 ℃ compared with that of 107.5 μm powder. Thinner diffusion layer can also accelerate the reaction owing to powder refining. The higher the temperature, the greater is the peak of the reduction rates at the same temperature, the greater the particle size, the smaller is the peak value of the reduction rates both inner diffusion and inter-face chemical reaction play an important role in the whole reaction process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号