首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
碳锰钢热变形行为及动态再结晶模型   总被引:2,自引:0,他引:2  
 采用单道次热模拟实验分析了各变形参数(初始晶粒尺寸、变形速率、变形温度和变形量)对碳锰钢动态再结晶的影响。结果表明,当初始晶粒越细小、变形温度越高、变形速率越小时,越易发生动态再结晶,同时在能够发生动态再结晶的条件下,变形量越大,动态再结晶越充分。得到了发生动态再结晶时的形变激活能Qdef、临界变形量模型、动态再结晶百分数模型及动态再结晶晶粒尺寸模型。计算得出ε05模型的平均误差为395%,模型预测值与实验数据计算值符合较好。  相似文献   

2.
摘要:采用Gleeble-3500热模拟试验机,在温度为950~1150℃、应变速率为0.1~10s-1和变形量为65%的条件下研究了CSP热轧TRIP钢的动态再结晶行为,探讨了初始奥氏体晶粒尺寸对TRIP钢动态再结晶行为的影响。研究结果表明,初始奥氏体晶粒尺寸越小,变形温度越高,应变速率越慢时,TRIP钢中奥氏体越易发生动态再结晶。其中,粗晶试样(初始奥氏体晶粒尺寸为767.54μm)在1050~1150℃内变形时,将发生动态再结晶。其热变形激活能为361539.17J/mol,确定了Zener-Holloman参数与应变速率和温度的关系式,建立了动态再结晶临界应变模型、高温奥氏体流动应力模型和动态再结晶晶粒尺寸模型,理论模拟结果与试验结果吻合较好。  相似文献   

3.
为了研究Cr8合金钢动态再结晶行为,利用Gleeble-1500D热模拟试验机对Cr8合金钢进行了热压缩试验。基于试验得到的数据,建立了Cr8合金钢修正的Laasraoui-Jonas(L-J)位错密度模型,结合动态再结晶形核长大模型,采用Deform-3D有限元软件中元胞自动机(CA)模块模拟了Cr8合金钢的动态再结晶行为,并和试验得到的动态再结晶组织进行比较。结果表明,当变形温度为900~1 200℃时,Cr8合金钢变形抗力与变形量曲线图呈现出典型的动态再结晶特征;Cr8合金钢的热激活能Q为340.332 k J/mol;应变速率一定时,随着温度的升高,Cr8合金钢动态再结晶晶粒尺寸增大,其再结晶晶粒尺寸的模拟结果与试验结果较为吻合,平均相对误差在7%以内,说明所建立修正的L-J位错密度模型能够准确预测Cr8合金钢动态再结晶组织的变化。  相似文献   

4.
采用单道次热压缩试验,研究了904L钢在不同变形温度、不同应变速率下的真应力-应变曲线以及组织形貌,阐明了热加工过程中热变形参数对其在变形过程中发生的动态再结晶行为及微观组织演变规律的影响,揭示了其相应的软化机制。结果表明:变形温度越高,流变应力越小,动态再结晶体积分数越高,晶粒尺寸越大;同温度下,变形速率越小,应力峰值越小,晶粒尺寸越大且晶界越平直化;904L钢的动态再结晶行为随着变形温度的升高,应变速率的减小,应变量的增大而进行得越充分且较高的变形温度有利于动态再结晶的进行。  相似文献   

5.
通过热模拟试验,深入分析了FGH96合金在高温变形条件下的动态再结晶行为,研究其发生动态再结晶的临界条件及动态再结晶晶粒尺寸的影响因素.深入研究了加工硬化率-应力曲线、加工硬化率-应变曲线和动态再结晶的RTT曲线,确定了FGH96合金热变形时动态再结晶的特征应变、峰值应变、临界应变以及最大软化率应变,同时,采用该方法,还准确地判断了动态再结晶的类型.采用定量金相分析方法,测定了再结晶晶粒尺寸,利用数学回归的方法建立了FGH96合金热变形时的动态再结晶数学模型.  相似文献   

6.
采用单道次热压缩试验,研究了904L钢在不同变形温度、不同应变速率下的真应力-应变曲线以及组织形貌,阐明了热加工过程中热变形参数对其在变形过程中发生的动态再结晶行为及微观组织演变规律的影响,揭示了其相应的软化机制。结果表明:变形温度越高,流变应力越小,动态再结晶体积分数越高,晶粒尺寸越大;同温度下,变形速率越小,应力峰值越小,晶粒尺寸越大且晶界越平直化;904L钢的动态再结晶行为随着变形温度的升高,应变速率的减小,应变量的增大而进行得越充分且较高的变形温度有利于动态再结晶的进行。  相似文献   

7.
为研究高强钢300 M静态再结晶行为,采用Gleeble-3800型热模拟试验机对300M钢进行单/双道次热压缩试验.通过双道次热压缩试验分析了变形温度、应变速率、变形量和初始晶粒尺寸对静态再结晶体积分数的影响.变形温度越高,应变速率越大,变形量越大,初始晶粒尺寸越小,则静态再结晶体积分数越大.其中变形温度、变形量和应变速率对静态再结晶体积分数影响较大,初始晶粒尺寸的影响相比较小.基于双道次热压缩试验结果建立了300 M钢的静态再结晶体积分数模型,基于单道次热压缩试验结果建立了300 M钢完全静态再结晶晶粒尺寸模型,并验证了静态再结晶体积分数模型的正确性.   相似文献   

8.
采用Gleeble-1500D热模拟试验机进行了单轴等温压缩实验,研究了IN718Plus镍基高温合金在变形温度1020~1140℃,应变速率0.001~1.000 s~(-1),变形量50%条件下的动态再结晶(DRX)行为,并建立了相关模型。研究结果表明:IN718Plus高温合金的动态再结晶行为对变形温度和应变速率敏感,动态再结晶晶粒尺寸及动态再结晶晶粒体积比随着变形温度的升高而增大,随着应变速率的加快而减小。在变形过程中,原始晶粒垂直于变形方向被拉长,细小的DRX晶核以晶界弓出的形式在原始晶粒边界处形核,并通过消耗原始变形晶粒的方式逐渐长大。当变形温度较低,应变速率较快时,动态再结晶程度不高,容易在合金变形组织产生典型的项链组织,且因此导致混晶现象严重。此外,以η相的溶解温度为界构建IN718Plus合金的动态再结晶临界应变模型、动力学模型以及晶粒尺寸模型, 3种模型精确度较高,能够较为准确的预测和表征该镍基高温合金的动态再结晶行为。  相似文献   

9.
采用Gleeble高温压缩实验研究了变形条件对GH625合金高温变形动态再结晶的影响,结果表明:当变形程度较小时,原始晶粒内部出现大量孪晶,晶界呈现锯齿状凸出;随变形程度的增加,在晶界弓出部位开始形核,形成大量再结晶晶粒,随变形程度进一步增加,GH625合金动态再结晶体积分数增大,但是再结晶晶粒尺寸无明显变化;GH625合金动态再结晶是一个受变形温度和应变速率控制的过程,变形温度越高,动态再结晶越容易形核,应变速率越小,动态再结晶过程进行得越充分。在低应变速率条件下,GH625合金获得完全动态再结晶组织的温度随变形速率的升高而升高,而在高应变速率条件下必须考虑变形热效应对合金变形组织的影响。  相似文献   

10.
本文研究了新型第四代粉末高温合金FGH4102在等温热模拟压缩过程中的组织演变,对γ′相在动态再结晶过程中的作用进行了探讨。结果表明,热等静压态合金在1060~1120℃温度范围变形时,热加工性能较好。1140℃变形后试样容易发生开裂,合金热加工性能较差。合金在γ+γ′两相区变形时均发生了不同程度的动态再结晶,再结晶晶粒尺寸远小于热等静压态的晶粒尺寸。变形过程中,尺寸较大的γ′相起到促进动态再结晶的作用。变形参数对动态再结晶的影响非常显著。低温高应变速率变形时,γ′相促进动态再结晶形核占主导地位,再结晶晶粒比较细小;高温低应变速率变形时,晶粒长大逐渐占据主导地位,再结晶晶粒尺寸较大。  相似文献   

11.
利用Gleeble热模拟试验机对Monel K-500合金进行了不同变形温度、不同变形量的热模拟试验。结果表明,合金变形抗力大,随着温度的升高,合金的流变应力及其最大值降低。随变形量增大,初始再结晶温度和完全再结晶温度均明显降低,当变形量分别为30%、60%、80%时,其初始再结晶的变形温度分别为950、850、800℃左右;其完全动态再结晶的变形温度分别为1 100、1 050和1 000℃左右。当变形温度高于1 100℃,随变形量增大,再结晶晶粒显著细化。根据上述规律制订出了该合金的锻造工艺,所锻造的该合金棒材组织均匀,效果良好。  相似文献   

12.
研究了V-Ti微合金非调质钢38MnVS(/%:0.42C、0.76Si、1.33Mn、0.011S、0.013P、0.10V、0.02Ti)的奥氏体动态再结晶过程。通过Gleeble-3800热模拟试验机,研究了变形温度(950~1150℃)和变形速率(0.1~10s-1)对38MnVS钢奥氏体动态再结晶过程的影响,并建立了Zener-Hollomon参数为变量的方程、动态再结晶尺寸模型和动态再结晶状态图。结果表明,变形温度越高,变形速率越低,发生动态再结晶的临界驱动力越小,动态再结晶越易进行;微合金非调质钢38MnVS动态再结晶激活能为Qd=275.453 kJ/mol。  相似文献   

13.
田耘  柳光祖  杨峥 《钢铁研究学报》2003,15(Z1):541-547
以氧化物弥散强化的MGH 956合金由不同冷、热轧制工艺加工出的不同厚度的板材作为研究对象,探讨了经不同的再结晶退火工艺处理后该合金的组织.结果表明MGH 956合金板材的再结晶是否充分、完全再结晶的退火温度和保温时间以及再结晶的晶粒尺寸均与最后一个退火周期完成后冷、热轧制过程的工艺参数有非常直接的关系.变形温度越低、变形量越大,板材充分实现再结晶的温度越低、保温时间越短,晶粒尺寸也越大.而再结晶的晶粒形貌则主要取决于所采用的变形加工的方法和方式.  相似文献   

14.
在Gleeble-3500热模拟机上对Hastelloy C-276(C-276)合金在变形温度为1 000~1 250℃和应变速率为0.01~10.00s~(-1)的变形条件下进行了高温压缩试验,研究了C-276合金热变形过程中组织演变和动态再结晶行为。结果表明,随着变形温度的升高,动态再结晶晶粒尺寸增大,动态再结晶进行得越充分;随着变形程度的增加,动态再结晶体积分数增大,动态再结晶晶粒略有长大;该合金发生动态再结晶的临界应变ε_c与Z参数和ε_p之间的关系分别为:ε_c=7.67×10~(-4)Z~(0.144),ε_c≈0.78ε_p;该合金动态再结晶形核机制主要为晶界弓弯形核机制,也存在孪生诱发动态再结晶形核机制。C-276合金热变形过程中晶粒得到显著细化,组织的均匀性得到有效改善,选用适宜的热加工工艺,可以获得细小均匀的组织。  相似文献   

15.
采用Gleeble热模拟试验机和透射电镜、扫描电镜及定量金相等分析技术,就钛对低碳Mn-V钢奥氏体晶粒长大行为、奥氏体动态再结晶行为等进行了研究.结果表明,含钛钢中形成稳定的碳氮化钛,对阻止再加热奥氏体晶粒长大有利.含钛钢变形抗力比不含钛钢要高,其动态再结晶开始的临界变形量比不加钛钢的小,易于发生再结晶,且含钛钢的再结晶晶粒尺寸相对较细,再结晶晶粒长大速度也更慢.  相似文献   

16.
碳锰钢压缩过程中非均匀应变与再结晶之间关系的研究   总被引:1,自引:1,他引:1  
魏洁  李权  唐广波  刘正东 《钢铁》2006,41(7):74-78
采用有限元方法模拟了热模拟试验的变形过程,分析了热模拟变形过程中的非均匀应变对奥氏体动态再结晶及晶粒尺寸的影响.结果表明,在等效应变最大的区域,奥氏体动态再结晶并非最完全,而剪应变对动态再结晶的影响则较大,在剪应变最大的区域,再结晶最完全,晶粒最细小.在试验所设定的最大变形量为62%的变形条件下,等效应变对晶粒细化的影响存在一个临界值,当等效应变大于0.96时,不完全动态再结晶区域的奥氏体晶粒得不到进一步细化,而随着剪应变的增加,奥氏体晶粒不断细化,可见剪应变对奥氏体晶粒尺寸的影响更大.因此,用等效应变等于实际应变处的晶粒尺寸来考察实际晶粒尺寸的方法,存在着不合理性.  相似文献   

17.
采用Gleeble热模拟试验机和透射电镜、扫描电镜及定量金相等分析技术,就钛对低碳Mn-Ⅴ钢奥氏体晶粒长大行为、奥氏体动态再结晶行为等进行了研究。结果表明,含钛钢中形成稳定的碳氮化钛,对阻止再加热奥氏体晶粒长大有利。含钛钢变形抗力比不含钛钢要高,其动态再结晶开始的临界变形量比不加钛钢的小,易于发生再结晶,且含钛钢的再结晶晶粒尺寸相对较细,再结晶晶粒长大速度也更慢。  相似文献   

18.
针对微合金化非调质钢热轧过程的变形特征,通过Gleeble-3800热模拟试验机研究了Nb-Ti-V非调质钢C38N2(/%:0.40C、0.52Si、1.42Mn、0.010P、0.047S、0.028V、0.025 Ti、0.022Nb)在950~1 150℃,变形速率0.1~10 s-1变形量60%,单道次压缩时的奥氏体动态再结晶过程,计算得出C38N2钢的动态再结晶晶粒尺寸模型和动态再结晶状态图。结果表明,C38N2钢变形温度越高,变形速率越低,则发生动态再结晶的储蓄能越小,动态再结晶越易发生。C38N2钢的动态再结晶激活能Qd=294.905 kJ/mol。  相似文献   

19.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,在变形温度650~850℃、应变速率0.001~10 s~(-1)和总压缩应变量50%的条件下,对Cu-Cr-Zr合金的流变应力行为进行研究.通过应力-应变曲线和显微组织图分析了合金在不同应变速率、不同应变温度下的变化规律.结果表明:应变速率和变形温度对合金再结晶影响较大,变形温度越高,合金越容易发生动态再结晶;应变速率越小,合金也同样容易发生动态再结晶,并且对应的峰值应力也越小.从流变应力、应变速率和温度的相关性,得出了该合金热压缩变形时的热变形激活能Q和流变应力方程.研究分析Cu-Cr-Zr合金的热加工性能,可为生产实践提供理论指导与借鉴.  相似文献   

20.
通过金相显微镜(OM)、扫描电子显微镜(SEM)等测试手段,在Gleeble-1500热模拟机上研究了粗晶EW75镁合金热变形行为,变形温度为723 K、应变速率为0.05 s-1,最大变形程度为80%的条件下,根据结果分析了合金高温变形时的真应力-真应变曲线以及不同变形量的显微组织,揭示了合金在变形过程中孔洞产生及消失的机制。结果表明:铸态合金平均晶粒尺寸约为149μm,均匀化后合金平均晶粒尺寸达到197μm左右;真应力-真应变曲线呈现出典型的动态再结晶特征;变形量为40%,原始大晶粒被细小再结晶晶粒包围,呈现典型的"项链"状特征,在局部晶粒交结处出现孔洞,随着变形量的增加,孔洞先长大后变小,当变形量达到80%时,孔洞基本消失愈合,愈合区有细小的再结晶的晶粒,形成明显的愈合带;大尺寸晶粒间的相互协调性能较差是变形出现孔洞的主要原因,随着变形量的增加,再结晶比例的提高带来的变形协调性能增强,孔洞最终被压扁,重新接触的两表面存在较高的能量,最终发生完全动态再结晶是合金孔洞愈合机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号