首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
The Pd-only catalysts for motorcycle were prepared by impregnating CeO2-ZrO2-Al2O3 and CeO2-ZrO2+Al2O3 with PdCl2 aque-ous solution and characterized by X-ray diffraction (XRD), oxygen storage capacity (OSC) and H2-temperature-programmed reduction (H2-TPR) methods. The XRD result indicated that the CeO2-ZrO2-Al2O3 compound prepared by co-precipitation formed a single solid solu-tion and had good thermal stability, and Pd phase was not observed in all catalysts. The TPR results showed that the reduction temperature of Pd/CeO2-ZrO2-Al2O3 catalyst was lower than that of Pd/CeO2-ZrO2+Al2O3 catalyst whether they were fresh or aged catalysts. The Pd/CeO2-ZrO2-Al2O3 exhibited high three-way catalytic activity at low temperature, high thermal stability, and wide working window, sug-gesting a great potential for applications.  相似文献   

2.
The nano-crystalline Cu-Ce-Zr-O composite oxides were successfully prepared by the supercritical anti-solvent (SAS) process. The physicochemical properties and catalytic performances were investigated by X-ray diffraction (XRD), Raman spectroscopy, H2 temperature-programmed reduction (H2 -TPR), oxygen storage capacity (OSC) measurement and catalytic activity evaluation. It was found that Cu2+ ions incorporated into CeO2 -ZrO2 lattice to form Cu-Ce-Zr-O solid solution associated with the formation of oxygen vacancies. The Cu-Ce-Zr-O catalysts prepared via the SAS process with the Cu content 2.63 mol.% showed the highest OSC index of 636.9 μmol/g. Compared with the samples prepared by impregnation method, Cu doping using SAS process could improve the dispersion of Cu2+ in the composite oxide, enhance the interaction between Cu2+ and CeO2-ZrO2 , improve the reducibility of catalyst, and thus improve the OSC performance and increase the catalytic activity for CO oxidation at low temperature.  相似文献   

3.
Praseodymium (Pr) was impregnated to CeO2-ZrO2 solid solution by an impregnation method. The as-obtained Pr modi- fied CeO2-ZrO2 was impregnated with 1 wt.% Pd to prepare the catalysts. The structure and reducibility of the fresh and hydrother- really aged catalysts were characterized by X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS), CO chemi- sorption and H2 temperature-programmed reduction (H2-TPR). The oxygen storage capacity (OSC) was evaluated with CO serving as probe gas. Effects of impregnated Pr on the structure and oxygen storage capacity of catalysts were investigated. The results showed that the aged Pr-impregnated samples had much higher OSC and better reducibility than the unmodified ones. The scheme of structural evolutions of the catalysts with and without Pr was also established. Partial of the impregnated Pr diffused into the bulk of CeO2-ZrO2 during ageing, which inhibited the sintering, and increased the amount of oxygen vacancies in CeO2-ZrO2 support. Furthermore, those impregnated Pr species which covered on the surface of the support obstructed the strong metal-support interaction between Pd and Ce so as to reduce the encapsulation of Pd as well as the back spill-over of the oxygen during the catalytic process.  相似文献   

4.
CeO2-ZrO2-MnOx mixed oxide series were prepared by sol-gel method. CO pulse and CO-O2 cycle measurements were carried out to examine the oxygen storage complete capacity (OSCC) and dynamic oxygen storage capacity (OSC) of the samples. The doping method brought about strong interactions between manganese oxide and ceria, both in the bulk and on the surface. Only a small part of Mn cations are incorporated into the ceria lattice to form solid solutions and the remaining are left on the surface as finely dispersed Mn3O4. The OSC behaviors of the materials are influenced by the doping amount of Mn and the solubility of Mn in the CeO2 lattice. The OSC is more easily affected by available contents of oxygen storage components when the measurement frequency is low. Comparatively, the concentration of lattice defects, which affects the mobility of bulk oxygen, is the determining factor under high frequency.  相似文献   

5.
The metallic substrate-catalysts with different subsistence states of CeO2-ZrO2 mixed oxides were prepared and the catalytic properties were investigated. The studies on CeO2-ZrO2-V2O5-CuO mixed oxides which were prepared by coprecipitation, show that the doping of V5 and Cu2 in CeO2-ZrO2 mixed oxides can enhance the catalytic activity and thermal stability of coating materials. Moreover, different additives were doped in slurries of γ-Al2O3 to investigate the influence of additives on oxidation activity of catalysts. The mixture of ceria-zirconia, alkali metals and other rare earths acting as additives exhibits promotion effect on oxidation activity by optimizing the distribution of oxygen on the surface and in the bulk of ceria species. This mentioned mixture was mixed with γ-Al2O3 and a newly proposed active component to prepare a new catalyst. Afterward, the influence of thermal treatment on the new catalyst were investigated by calcinations at 500, 650, 750, 800, 850 and 900 ℃ for 2 h. The light-off curves of CO and HC show that after being treated at 650~750 ℃, catalysts present the best activity. XRD patterns show that ceria and zirconia species in the newly proposed active component form a phase of extra CeO2-ZrO2 mixed oxides on the surface of catalysts after the thermal treatment at 750 ℃, which has practical value for improving the preparation process and promoting the catalytic properties. Moreover, XPS results imply the existence of Ce1-xPdxO2-σ and Ce1-xPtxO2-σ on the surface of these treated samples, which may show influence on the catalytic activities.  相似文献   

6.
Adding rare earth oxide CeO2 with variable valences to La2O3 formed a mixture of rare earth oxides. By means of dipping CeO2, La2O3 and their mixture, whose carriers were all γ-Al2O3, were used as the catalyst for the reduction of SO2 by CO. The activation process of this catalyst and the impact of temperature and reactant concentration on the activation process were investigated. Using X-ray diffraction, the structure characteristics of catalyst before and after reaction were analyzed to reveal the change of phase structure. The result shows that the rare earth oxide mixtures composing of CeO2 and La2O3, as the catalyst for the reduction of SO2 by CO, diminish activation temperature 50~100℃ less and have higher activity than a single oxide CeO2 or La2O3. The reason possibl is that La2O3 goes into in the lattice of CeO2 to form solid phase complex CeO2-La2O3 and increases the capability of CeO2-La2O3/γ-Al2O3 catalyst to store oxygen, which supplies the redox of CeO2 reaction with a better condition. At the same time, elemental sulfur formed in the redox reaction impels La203 to be transformed to activation phase La2O2S in a lower temperature, which can be explained with the synergism between redox reaction and COS intermediate mechanism reaction.  相似文献   

7.
Four kinds of CeO2-ZrO2 mixed oxides, i.e., a physical mixture of ceria and zirconia (CZP), zirconia-coated ceria (ZCC), ceria-coated zirconia (CCZ) and a chemical mixture of celia and zirconia (CZC), were prepared. The oxygen storage capacity (OSC) measurements at 500℃ were performed under transient and stationary reaction conditions. All the curves of CO2 evolution during CO-O2 cycles presented a bimodal shape. The fast peak was primarily the result of the reaction of CO with the oxygen from the oxides, which was mainly determined by the nature of the material The sec- ond peak was mostly related to the CO2 adsorption behavior and was highly influenced by the surface area and the number of surface active sites. As a result, OSC activity of the samples followed in the order of CZC 〉 CCZ 〉 ZCC=CZP.  相似文献   

8.
Binary Ce-Zr(CZ),Pr-Zr(PZ) and ternary Ce-Zr-Pr(CZP) mixed oxides were prepared by an ammonia-aided co-precipitation method,and were aged in a steam/air flow at 1050 °C.X-ray diffraction(XRD),Raman spectra,X-photon spectra(XPS) and CO temperature programmed reduction(TPR) were carried out to characterize the micro-structure and reducibility of catalysts.The oxygen storage capacity(OSC) was evaluated with CO serving as probe gas.The results showed that a pseudo cubic structure was formed for the Zr-rich ceria-zirconia mixed oxides with Pr doping.The insertion of Pr prevented the phase segregation of the mixed oxides during the hydrothermal ageing.The Pr doped samples showed better redox performances in comparison with CZ,and the sample doped with 5 wt.% Pr showed the most remarkably promoted dynamic oxygen storage capacity.This phenomenon was closely related to both the reducibility and oxygen mobility of the mixed oxides.The introduction of praseodymium into ceria-zirconia could accelerate the oxygen migration by increasing the amount of oxygen vacancies,although it was difficult for Pr3+ ions themselves to participate in the oxygen exchange process.  相似文献   

9.
Hollow CuO-CeO_2-ZrO_2 nano-particles were prepared with supercritical anti-solvent apparatus by using methanol as solvent and supercritical carbon dioxide as anti-solvent. Two key factors(i.e., pressure and temperature) were investigated to explore the effects of catalyst structure and physic-chemical properties(i.e., morphology, reducing property, oxygen storage capacity and specific surface area). The resulting materials were characterized with X-ray diffraction(XRD), high resolution transmission electron microscopy(HRTEM), Brunauer-Emmett-Teller(BET), hydrogen temperature programmed reduction(H_2-TPR) and oxygen storage capacity(OSC) measurement, respectively. The experimental results showed that lower temperatures promoted production of hollow structure nano-particulates. The particle morphology also changed significantly, i.e. the solid construction was first transferred to hollow structure then back to solid construction. The optimal conditions for obtaining hollow nano-particles were determined at 45 °C, 18.0–24.0 MPa.  相似文献   

10.
The effect of H2O2 on the properties of Ce0.65Zr0.35O2 was explored by treating cerium nitrate and zirconium nitrate with a mixed aqueous solution of ammonia and ammonia-carbonate in the presence/absence of H2O2 . The resultant products were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption/desorption, oxygen storage capacity (OSC) and H2-temperature-programmed reduction (H2-TPR). The presence of H2O2 was found to have profound effect on powder properties such as surface area, crystallite size of the samples. It was also shown that the addition of H2O2 favored the incorporation of Zr4+ into CeO2 lattice, which facilitated the formation of CeO2-ZrO2 solid solution, and enhanced the thermal stability of the samples. OSC and H2-TPR studies indicated that the use of H2O2 enhanced the OSC and redox properties. Catalytic activity tests showed that as a support, the Ce0.65Zr0.35O2 prepared in the presence of H2O2 was more suitable for three-way catalyst. The corresponding Pd-only three-way catalyst demonstrated outstanding performance: wide air to fuel operation window, low light-off and total conversion temperature for the conversion of C3H8, NO and CO.  相似文献   

11.
Oxygen Storage Capacity of Pt-, Pd-, Rh/CeO2-Based Oxide Catalyst   总被引:3,自引:2,他引:3  
CZO (CeO2-ZrO2) and CZYO (CeO2-ZrO2-Y2O3) series of mixed oxides were prepared by coprecipitaion, and a part of these oxides were loaded with precious metals (PM). XRD, BET, and oxygen storage capacity (OSC) investigations were performed on samples aged at 750, 900, and 1050 ℃. It was observed that BET surface area and OSC showed a marked decrease in CeO2 aged at high temperature, and the erystallite size showed an obvious increase. The CZO samples consist of cubic- and tetragonal crvstal phases, and their crystallite size increase rapidly when aged at high temperature. The CZYO samples consist of single crystal phase when the content of Y exceeds 0.15 mol, and their erystallite size increases slowly during high-temperature aging. It is concluded that additive Y can stabilize the performance of CZYO oxides. In the aged CZO and CZYO mixed-oxide systems, addition of a small amount of precious metals (Pt, Pd, Rh) increased the rate of reduction and led to an obvious improvement in OSC. OSC of CZO and CZYO with precious metals are related to their composition and the type of precious metal.  相似文献   

12.
CeO2-ZeO2 solid solutions are extensively used as oxygen storage promoters in the current automotive three-way catalysts. High thermal stability of the textural properties is one of the most important requirements for practical application since temperatures up to 1273 K are easily experienced by these materials under real working conditions. In the present paper, we investigated how hydrothermal treatments applied to cakes of doped and undoped ZrO2-rich CeO2-ZrO2 precursors might improve the thermal stability of the final CeO2-ZrO2 solid solution. A rationale was developed that allowed to correlate the morphology of the hydrothermaUy treated cake with the thermal stability at 1273 K of the final product, which did not depend on the composition of the mixed oxides.  相似文献   

13.
CeO2-ZrO2 mixed oxide(Ce0.6Zr0.4O2) prepared by microwave-assisted heating co-precipitation was used as a support to prepare a series of CuO/Ce0.6Zr0.4O2 catalysts with various CuO contents(0 wt.%–15 wt.%) via the method of incipient-wetness impregnation.The obtained CuO/Ce0.6Zr0.4O2 samples were characterized by N2 adsorption,XRD,Raman,TEM and H2-TPR technologies,and their catalytic activities for CO oxidation were investigated.The results showed that the activity of CuO/Ce0.6Zr0.4O2 catalyst was strongly influenced by the content of CuO,and the catalyst with 10 wt.% CuO exhibited the best catalytic activity in CO oxidation,which could be attributed to the high dispersion and reducibility of CuO,and high oxygen vacancy concentration in the catalyst.  相似文献   

14.
The effects of BaO doping on the three-way catalytic activity of Pt-Rh catalyst and on water-gas shift were investigated. The results show that the light-off temperatures of hydrocarbon and carbon monoxide and nitrogen oxides of the fresh catalysts slightly differ from those of the aged catalysts, and the catalysts containing CeO2-ZrO2-BaO have lower lightoff temperature and better catalytic activity than these containing BaO and CeO2-ZrO2 after hydrothermal aging for 5 h at 1000 ℃. The catalysts were characterized by means of the temperature-programmed reduction (TPR) in hydrogen and the temperature-programmed desorption (TPD) in oxygen. It is confirmed that the suggested route of CeO2-ZrO2-BaO by coprecipitation can improve the catalytic activity of catalysts.  相似文献   

15.
CeO_2-ZrO_2 mixed oxides are widely used in the three-way catalysts due to their unique reversible oxygen storage and release capacity. Large surface area, high oxygen storage capacity and good thermal stability of cerium zirconium mixed oxides are the key properties for the automotive catalysts so as to meet the strict emission regulations. In this work, alumina modified CeZrLaNd mixed oxides were prepared by a co-precipitation method. The effects of moisture in precursor and inert N2 atmosphere during calcinations on the structure and properties were investigated by Brunauer-Emmett-Teller(BET) surface area measurements, X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), hydrogen temperature-programmed reduction(H_2-TPR), oxygen storage capacity(OSC), Raman spectroscopy, and X-ray photoelectron spectroscopy(XPS). The results show that the moisture in precursor during calcinations increases the crystal grain size of the cerium zirconium mixed oxides, improving the thermal stability. And the aged surface area of sample after being calcined at1000 ℃ for 4 h reaches 68.8 m~2/g(5.7% increase compared with the common sample). The inert N2 atmosphere endows a great pore-enlarging effect, which leads to high fresh surface area of 148.9 m2/g(13.5% increase compared with the common sample) and big pore volume of 0.5705 mL/g. The redox and oxygen storage capacity are also improved by inert N2 atmosphere with high OSC value of 241.06μmolO_2/g(41.3% increase compared with the common calcination), due to the abundant formation of the crystal defects and oxygen vacancies.  相似文献   

16.
A series of CexPr1-xO2-δ (x=0,0.5,0.9,1.0) mixed oxide calcined at different temperatures were synthesized by sol-gel method and characterized by Raman, XRD and O2-TPD techniques. When x=0.9, only a cubic phase CeO2 is observed. When x=0.5, the compound was combined by Pr6O11 and CeO2 mixed oxides. For CexPr1-xO2-δ (x=0.5,0.9) samples 465cm-1 Raman peak is attributed to the Raman active F2g mode of Ceo2. The broad peak at about 570cm-1 can be linked to lattice defects resulting in oxygen vacancies. The crystallite size of the samples increased as increasing the calcined temperature. But the increased value of Ce0.9Pr0.1O2-δ and Ce0.5Pr0.5O2-δ is smaller than single CeO2 and Pr6O11 obviously. It reveals that the insertion of Pr atom into the ceria lattice could enhance the sintering resistance and thermal stability of the mixed oxides. Calcination temperatures had great effect on the peak intensity for CeO2 but less effect on Ce0.8Pr0.2O2-δ in Raman spectra, and it may be caused by the colors transformation of the mixed oxidfs. The result of O2-TPD experiment indicates that the formation of solid solution has elevation the stabilization and thermal stability of the mixed oxides.  相似文献   

17.
The catalytic performance of methane partial oxidation was investigated on Pd/CeO2-ZrO2 and Pd/α-Al2O3 catalysts.The catalysts were characterized by XRD,Raman spectra,and TG-DTA techniques.The results show that CeO2-ZrO2 support is more advantageous for the catalytic activity and stability of catalysts compared to α-Al2O3.TG-DTA and Raman spectra results indicated that carbon deposited on the catalysts was in the form of graphite,which is the main reason for the deactivation of catalysts after a 24-hour reaction.Moreover,CeO2-ZrO2 had positive effect on inhibiting carbon deposition.  相似文献   

18.
A series of cerium zirconium mixed oxides were prepared by two co-precipitation methods using magnesium hydrogen carbonate(MHC)and mixed ammonia-ammonia hydrogen carbonate(AAHC)as precipitant respectively.The crystal structure,BET surface area and morphology of the produced cerium zirconium mixed oxides were characterized by X-ray diffraction(XRD),Brumauer-Emmett-Teller(BET)and scanning electron microscopy(SEM)techniques.The reduction-oxidation behavior and oxygen storage capacity(OSC)performance were also studied by temperature programmed reduction(TPR)and oxygen pulse chemical adsorption methods.The XRD results demonstrated that the cerium zirconium mixed oxides obtained by both methods possessed structure of cubic solid solution phase.The fresh surface area calcinated at 600℃,aged surface area after 1000℃ and OSC at 500 ℃ of cerium zirconium mixed oxides were determined to be 89.337,34.784 m2/g,and 567 μmol O2/g for MHC method and 122.010,46.307 m2/g,and 665 μmol O2/g for AAHC method,respectively.  相似文献   

19.
MnO and CeO2 powders were mechanically mixed by a spatula and by milling to obtain loose-contact and tight-contact mixed oxides,respectively.The monoxides and their physical mixtures were characterized by X-ray diffraction(XRD),Brunauer-Emmett-Teller(BET),X-ray photoelectron spectroscopy(XPS),Raman,O2 temperature-programmed desorption(O2-TPD),H2 temperature-programmed reduction(H2-TPR) and NO temperature-programmed oxidation(NO-TPO).The MnOx-CeO2 solid solutions did not form without any calcination process.The oxidation state of manganese tended to increase while the ionic valence of cerium decreased in the mixed oxides,accompanied with the formation of oxygen vacancies.This long-ranged electronic interaction occured more significantly in the tight-contact mixture of MnO and CeO2.The formation of more Mn4+and oxygen vacancies promoted the catalytic oxidation of NO in an oxygen-rich atmosphere.  相似文献   

20.
The influences of CeO2-ZrO2 and γ-Al2O3 mixing methods on the catalytic activity and stability of partial oxidation of methane (POM) were investigated over Ni/Ce0.7Zr0.3O2-Al2O3 catalysts. The catalysts were characterized by XRD, TPR, H2-chemsorption, and TG-DTA. For fresh catalysts, the results showed that the salt precursor mixing catalyst (ATOM) presented better performance than the catalysts prepared by the precipitator mixing method (MOL) and the powder mechanically mixing method (MECH). The result of XRD suggested that the interaction between CeO2-ZrO2 and Al2O3 in ATOM sample was stronger than the others, which led to more lattice defects and thereby better initial activity. Moreover, the MECH sample had the best stability and the least coke deposition in 24 h stability tests. The results of TPR and H2-chemsorption indicated that the intimate contact of Ni-Al in MECH sample enhanced the ability of resisting coke deposition and metal sintering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号