首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
利用Gleeble-1500D热模拟试验机研究了Ti-44Al、Ti-44Al-6Nb和Ti-44Al-6Nb-1Cr-2V合金在1 100~1 250℃和0. 01 s-1条件下的热变形行为。研究结果表明,添加β相稳定元素可降低TiAl合金的流变应力,在相同变形条件下Ti-44Al-6Nb-1Cr-2V合金具有更低的峰值应力。高温变形时,TiAl合金主要发生片层弯曲和拉长协调变形,以及片层团晶界处动态再结晶和B2相协调变形。动态再结晶程度随着变形温度的升高以及β相稳定元素含量的提高而增加,B2相协调变形和促进动态再结晶是TiAl合金的主要软化方式。添加β相稳定元素和控制B2相含量能有效改善TiAl合金热加工性能。  相似文献   

2.
Hastelloy C-276镍基合金的热压缩变形行为   总被引:1,自引:0,他引:1  
采用Gleeble-3500热模拟试验机研究了Hastelloy C-276镍基合金在0.01~10 s-1、1000~1250℃、应变量0.7条件下的高温恒温压缩变形行为,对热压缩后的组织进行了金相显微分析。结果表明:C-276合金热变形流变应力随着应变速率的增大和变形温度的降低而增大。热变形过程中发生了动态再结晶,当温度T≥1200℃时,发生了完全动态再结晶,T<1200℃时,发生部分动态再结晶。热变形流变应力可用Zener-Hollomon参数来描述,根据修正后的流变应力曲线建立了Hastelloy C-276合金峰值应力下的高温变形本构方程,热变形材料常数为:激活能Q=446.51 kJ·mol-1,α=0.0037346,n=4.42851,A=1.11×1016。  相似文献   

3.
在Thermecmastor-Z动态热模拟试验机上对Ti-43Al-4Nb-1.4W和Ti-43Al-4Nb-1.4W-0.6B-0.2Y合金进行高温压缩变形实验(实验温度范围为1 050~1 150℃,应变速率范围为0.001~1 s 1),对其热变形组织进行显微分析,并利用热加工Z参数(Zener-Hollomon参数)综合描述变形温度及应变速率对材料热变形行为的影响。结果表明:2种合金在不同高温压缩变形条件下均发生不同程度的动态再结晶;随Z参数值的降低,β相逐渐由不规则形状转变为球形,且长大明显,同时,动态再结晶晶粒的体积含量也随之增加;Ti-43Al-4Nb-1.4W基合金的高温变形机制与Z参数值密切相关;在低Z值条件下,其主要变形机制为动态再结晶和β相的球化、长大;在高Z值条件下,其主要变形机制为片层的扭折、重新取向和局部动态再结晶;加入微量B和Y后,动态再结晶程度增大,这主要与颗粒诱发动态再结晶形核有关。  相似文献   

4.
在Gleeble-3500热模拟试验机上对Ti-25Al-14Nb-2Mo-1Fe合金进行了等温恒应变速率压缩试验,研究了在变形温度为950~1 100℃,应变速率为0.001~1 s-1,最大变形程度为50%的条件下合金的热压缩变形流变应力行为与微观组织演变。结果表明:Ti-25Al-14Nb-2Mo-1Fe合金的流变应力对变形温度和应变速率均较为敏感,其流变应力曲线具有应力峰值、流变软化和稳态流变的特征。在变形温度为950℃,应变速率为0.001~0.1 s-1的条件下,Ti-25Al-14Nb-2Mo-1Fe合金的热变形特性为片层组织球化,其热变形机制可用晶界分离球化模型进行解释说明;在变形温度为1 000~1 100℃,应变速率为1 s-1的条件下,材料只发生了动态回复现象;在变形温度为1 050~1 100℃,应变速率为0.001~0.1 s-1的条件下,材料发生了动态再结晶现象。  相似文献   

5.
采用Gleeble-1500D热模拟试验机对一种含铁Ni3Al基合金进行了高温压缩试验,试验温度为1 050~1 150℃,应变速率为0.1~1.0s-1,工程应变量为50%。获得了不同变形条件下的真应力-真应变曲线,并分析了合金微观组织的变化。结果表明:合金的流变应力随着变形程度的增加先达到峰值应力,之后逐渐降低,趋于稳态流变。提高变形温度及减小应变速率能有效促进动态再结晶过程。在变形温度1 100℃以上,工程应变为50%时,能够获得完全再结晶的锻态组织。基体中的γ′相粒子对合金动态再结晶有抑制作用,β相的存在促进了相界处动态再结晶形核但抑制了完全动态再结晶晶粒的长大。高温下β相的软化效应和γ′相的回溶转变都有效提高了Ni3Al基合金热加工性能。  相似文献   

6.
生物医用Ti-6Al-7Nb合金高温变形行为研究   总被引:2,自引:0,他引:2  
金哲  张万明 《稀有金属》2012,36(2):218-223
为了研究用于外科植入生物材料Ti-6Al-7Nb合金的热变形行为,利用Gleeble 2000热模拟实验机对Ti-6Al-7Nb合金在750~900℃温度范围和0.001~10.000 s-1应变速率范围内进行等温热压缩实验,试验在氩气保护下进行,采用金相显微镜和透射电镜观察热变形后的组织;通过计算变形激活能分析Ti-6Al-7Nb合金在热压缩过程中的变形机制。结果表明:流变应力在经历加工硬化阶段后均表现出流变软化现象,在较低应变速率ε=0.001~0.100 s-1时,材料的软化主要受α相动态再结晶影响;而在较高应变速率ε=1~10 s-1时,材料基本不发生再结晶,其软化是由于钛合金在变形过程中的绝热效应造成的。通过Arrhenius方程计算出合金在750,800,850和900℃下的变形激活能分别为209.25,196.01,194.01和130.40 kJ.mol-1;在750~850℃下的激活能接近于α-Ti的自扩散激活能(200 kJ.mol-1),表明在750~850℃的变形由α-Ti自扩散参与的动态再结晶控制;在900℃下激活能略低于β-Ti的自扩散激活能(160 kJ.mol-1),说明在900℃下的变形机制由β相的动态回复控制。综合考虑变形行为与组织细化因素,温度在750~850℃,变形速率在0.01~0.10 s-1范围为良性热加工区域。  相似文献   

7.
基于摩擦修正的TB8合金热压缩流变应力行为分析   总被引:2,自引:0,他引:2  
采用Gieeble-1500热模拟试验机对TB8(Ti-15Mo-2.7Nb-3Al-0.2Si)合金进行了等温热压缩变形试验,温度范围为750-1100℃,应变速率范围为0.01~1s-1.在热压缩过程中由于摩擦影响导致流变应力不能真实反映材料的高温变形行为.采取一种简便的方法对实验数据进行了摩擦修正,研究了TBS合金热变形流变应力行为,并对合金的变形机制进行了初步探讨.结果表明:热压缩过程中摩擦对于流动应力的影响十分显著,采取的修正方法降低了实验中摩擦引起的误差;TB8合金的热变形行为具有高度的变形温度和应变速率敏感性,随着变形温度的提高和应变速率的降低,真应力显著降低;动态回复和动态再结晶是TB8高温变形时主要软化机制.  相似文献   

8.
利用Gleeble—3800型热模拟试验机对经过真空熔炼的Ti-25Al-15Nb-1Mo合金进行了等温压缩实验,研究了在1 100~1 200℃及0.1~0.5 s~(-1)应变速率下的高温流变曲线、微观组织演变以及不同区域的硬度变化趋势。结果表明:合金在高温变形过程中,真应力-应变曲线呈现出单峰特征,应变速率的降低或温度的升高都会使合金的流动应力降低;热变形使组织由粗大O板条和原始的B2相混合组织演变为单一B2再结晶组织。造成该合金流变软化和组织演变的主要原因是B2组织发生了动态再结晶。再结晶区的硬度值最小可至350 HV,与动态再结晶有关。  相似文献   

9.
采用电弧熔炼法制备含微量B元素的Ti-43Al-4Nb-1.4W-xB(x=0.2,0.4,0.6,0.8。数据为原子分数,%)合金;利用光学显微镜(OM)和扫描电镜(SEM)研究B含量对该铸态合金显微组织的影响,并通过热模拟压缩试验研究温度为1 050~1 200℃、应变速率为10 3~1 s 1的变形条件下Ti-43Al-4Nb-1.4W-0.6B合金的热变形行为,分析该合金在不同变形条件下的组织演化规律。结果表明:当B含量(质量分数)达到0.6%时,合金组织明显细化;Ti-43Al-4Nb-1.4W-0.6B合金的高温压缩流变应力随变形速率增加以及变形温度降低而增加;其峰值应力与变形条件之间的函数关系可用双曲正弦函数来描述,并以此求得高温变形激活能为580.68 kJ/mol;加入0.6%B对合金动态再结晶形核起到一定的促进作用,热变形后,合金发生明显的动态再结晶。  相似文献   

10.
采用先进的热力模拟技术对高温合金NiCr22Mo9Nb合金进行热压缩试验,系统研究了合金在900~1100℃,0.01~5.00 s-1变形条件下的热塑性行为。根据热压缩实验数据,给出不同变形参数下该合金的流变应力曲线。考虑绝热温升效应对流变应力曲线的影响,通过外推法对高应变速率曲线进行绝热温升修正,基于修正后的流变应力曲线构建该合金Arrhenius型本构模型。根据动态材料模型推导该合金在不同应变下的加工图,并分析不同变形参数下该合金的变形组织演化规律。结果表明,该合金的流变应力曲线呈现动态再结晶软化特征;在高应变速率5.00 s-1下发生明显的绝热温升现象,并且随着变形温度的升高绝热温升效应减弱;该合金在900~1100℃时的热变形激活能为485.31k J·mol-1;结合该合金的热加工图和不同区域变形组织特征,合金的完全再结晶区域为变形温度T=1050~1100℃、应变速率ε=0.10~0.25 s-1,失稳区域为T=900~1100℃、ε=0.3~1.8 s-1,建议该合金的最佳热加工窗口为完全再结晶区域。  相似文献   

11.
对均匀化炉冷态7085铝合金进行高温压缩实验,研究该合金在变形温度为350~450℃、变形速率为0.001~0.1 s 1和应变量为0~0.6条件下的流变应力及软化行为。结果表明:流变应力在变形初期随着应变的增加而迅速增大,出现峰值后逐渐软化进入稳态流变;随着变形温度的升高和应变速率的降低,峰值流变应力降低。采用包含Zener-Hollomon参数的Arrhenius双曲正弦关系描述合金的流变行为。分析和建立了应变量与本构方程参数(激活能、应力指数和结构因子)的关系,研究发现本构方程参数随应变量的增加而减少。合金的流变行为差异与动态回复再结晶和第二相粒子相关。  相似文献   

12.
为制定中温中压容器用钢13MnNiMoR的热加工工艺提供理论依据并实现其工业化生产,利用单道次热压缩模拟实验研究了变形温度(900~1150℃)和应变速率(0.01~1s~(-1))对其热变形行为的影响.结果表明:当应变速率低于0.1s~(-1)时,新晶粒有足够的时间进行形核和长大,奥氏体容易发生动态再结晶;当变形温度降低或应变速率增加时,实验钢在变形过程中主要发生动态回复,流变应力也随之提高.基于测定的流变应力曲线,通过拟合得到实验钢在热变形时的应力指数为4.29,动态再结晶激活能为319kJ/mol,据此建立了13MnNiMoR钢在高温变形时的热加工方程.  相似文献   

13.
采用Gleeble-1500型热模拟机在变形温度为360~480℃、应变速率为0.01~10 s-1、真应变为0~0.7的条件下,研究Mg-12Gd-3Y-0.6Zr合金二次挤压过程的热变形行为,获得其热变形工艺参数,并分析热变形后的显微组织。结果表明:合金的峰值应力随应变速率的增大而提高,随应变温度的升高而降低;在变形温度、应变速率相同的情况下,一次热模拟的峰值应力均大于二次热模拟(450℃,10 s~(-1)除外);合金二次挤压过程的流变应力可以采用含Zener-Hollomon参数的双曲正弦函数形式来描述;由于二次热模拟试样中位错及晶界运动增强,使二次热模拟的激活能(Q)、应力指数(n)均小于一次热模拟的相应参数,导致二次挤压较一次挤压容易发生再结晶。  相似文献   

14.
对BT25钛合金在温度为950~1 100 ℃,应变速率为0.001~10 s-1条件下的高温变形行为进行了研究,分析了热力学参数对流变应力和微观组织的影响,并以Arrhenius方程为基础,构建了本构方程,最后进行了验证.结果表明:BT25合金在相同温度和应变速率下变形,变形量越大,动态再结晶越充分并细化了晶粒.相同变形量,变形温度越低,应变速率越高,动态再结晶晶粒尺寸越细小;流变应力随应变速率的增加而增加,随变形温度的升高而减小;BT25合金在α+β两相区(950~1 010 ℃)Q=763.51 kJ/mol,β相区(1 040~1 100 ℃)Q=231.36 kJ/mol.   相似文献   

15.
以上引连铸TU1杆料为研究对象,在MMS-100热模拟试验机上对其进行单道次压缩试验,研究了在不同应变速率(0.01~10 s-1)和不同变形温度(750~950 ℃)条件下的热变形行为,构建其本构模型.结果表明:在10 s-1高应变速率条件下,TU1在750 ℃变形时峰值应力高达80 MPa,当温度升高到950 ℃时,峰值应力降至38 MPa;而在应变速率为0.01 s-1、750 ℃变形时,峰值应力仅为30 MPa,此时TU1已经发生动态再结晶;通过本构方程计算得到TU1的热变形激活能约为253 kJ/mol.   相似文献   

16.
采用MMS-100热力模拟机对Cu-Ni-Ti合金进行了温度为700~850℃、变形速率为0.01~10 s-1的等温压缩试验.研究表明,流变应力随应变程度增加快速上升至极限值后逐渐转变为平缓曲线,随温度增加而降低,随应变速率增加而上升.基于应力与变形速率和应变温度之间的关系,构建了Cu-Ni-Ti合金的本构方程和热加...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号