首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
泡沫镍的抗拉强度对电池生产与电池品质有着极其重要的影响.试验采用聚氨脂软泡沫塑料作为基材,采用碱性化学镀镍以及热处理工艺制备泡沫镍样品,研究镀液中总镍离子浓度、阴离子型添加剂A的浓度以及其他添加剂浓度对泡沫镍产品抗拉强度的影响,并采用二次镀的方法制备泡沫镍,与一次镀产品进行对比.结果表明,镍离子质量浓度在35~60g/L范围内对产品抗挣强度影响不大;阴离子添加剂A的浓度对泡沫镍的抗拉强度有显著影响,泡沫镍的抗拉强度随着A浓度增加而提高,与不添加A的产品相比,最多可提高40%;二次镀的方法对提高产品的抗拉强度有明显效果,抗拉强度最多可提高50%;同时,稀士元素铈离子的加入对提高扰拉强度有一定的作用.  相似文献   

2.
聚氨酯泡沫上化学镀镍研究   总被引:5,自引:0,他引:5  
实验给出了聚氨酯泡沫的粗化和化学镀镍工艺参数;研究了对化学镀镍沉积速度影响的因素,发现温度、还原剂和金属镍盐浓度是主要影响因素,随着温度的升高及还原剂与镍盐浓度的增大,镀速增加。化学镀镍后经电镀、热解和热处理制得泡沫镍。  相似文献   

3.
提高泡沫镍综合技术性能的方法   总被引:1,自引:0,他引:1  
通过试验研究了电镀液镍盐浓度、电镀添加剂(润湿剂、整平剂和光亮剂)、阴极电流密度和热处理等因素对泡沫镍力学性能和阴极电流效率的影响,阐明了工艺技术条件对泡沫镍技术性能的影响机理,提出了提高泡沫镍综合技术性能的工艺方法,制得了综合技术性能指标优良的泡沫镍样品。  相似文献   

4.
以聚氨酯泡沫树脂为基体,采用化学镀、电沉积、热解和氢气还原的方法制备出网状结构的泡沫Ni-Mo合金。对该泡沫合金的形貌、镀液组分与合金组分的关系和合金的抗拉强度、抗腐蚀性、高温抗氧化性进行了分析研究。试验结果表明:合金中Mo含量随着Na2MoO4浓度增加而增加,该泡沫合金骨架平整,泡沫Ni-Mo合金抗拉强度、耐腐蚀性和高温抗氧化性优于泡沫镍,在中性盐雾试验中的抗腐蚀性加强,高温抗氧化性也增强。  相似文献   

5.
以聚氨酯泡沫树脂为基体,采用化学镀、电沉积、热解和氢气还原的方法制备出网状结构的Ni-W合金泡沫。对该合金泡沫的形貌、镀液组分与合金组分的关系和合金的抗拉强度、抗腐蚀性、高温抗氧化性进行了分析研究。试验结果表明:合金中W含量随着Na2WO4·2H2O浓度增加而增加,该合金泡沫骨架平整,Ni-W合金泡沫抗拉强度、耐腐蚀性和高温抗氧化性优于镍泡沫,在中性盐雾试验中的抗腐蚀性加强,高温抗氧化性也增强。  相似文献   

6.
粗结晶硫酸铜含有大量镍、砷等杂质,简单溶解——结晶工艺产出的硫酸铜产品镍、砷杂质含量超出国家标准较多,限制了其应用领域,硫酸铜品质提升迫在眉睫。通过试验来研究采用粗结晶为原料,生产符合国家标准的电镀硫酸铜的工艺流程及关键控制参数。  相似文献   

7.
综述了电沉积镍钨合金的研究现状,分析了镀液成分和工艺条件对电沉积镍钨合金镀层的组成及其性能的影响,并介绍了镍钨合金镀层的各种性能,最后指出了今后的发展趋势和研究意义所在。  相似文献   

8.
研究了镀液pH值对Cu/Ni-P合金镀层硬度及耐蚀性能的影响。结果表明,镀液pH=9时,铜/镍磷双镀层具有很好的耐蚀性能和较高的硬度。  相似文献   

9.
研究了在硫酸盐型镀液中连续电沉积镍含量为7 ̄9%wt的锌镍合金镀层工艺,讨论了镀液的Zn^2+/Ni^2+比及阴极电流密度对合金镀层中镍含量的影响;通过」中性盐雾试验、周浸试验、电化学试验研究锌镍合金镀层的耐蚀性。  相似文献   

10.
泡沫镍的制备工艺与性能   总被引:14,自引:0,他引:14  
探讨了在聚氨酯泡沫塑料上用化学镀镍法制备泡沫镍的工艺和性能。经化学镀镍的可导电泡沫的电阻率越大 ,电铸时电流增加速度越慢 ;电阻率的偏差越大所得泡沫镍均匀性越差 ;泡沫镍的化学成分主要受原料镍纯度影响 ;构成泡沫镍网状结构的丝均为中空体 ,其截面呈三角形 ,中空微孔部分的体积占总孔隙率的 1 5 %~3 0 % ;各条件下所得产品孔隙率均大于 95 8%。  相似文献   

11.
The purpose of this study is to evaluate the mechanical properties of 6061 Al foam products, which were fabricated by the powder compression and multistep induction heating method, and to build the database necessary for computer-aided modeling or foam components design. In this study, 6061 Al foams with various porosity fractions were fabricated according to the porosity fractions-final heating temperature curve. The relationships between porosity fraction and morphological properties (porosity diameter, number per unit area of porosities, and surface skin thickness) were investigated. Mechanical properties such as compressive strength, energy absorption capacity, and efficiency were investigated to evaluate the feasibility of foams as crash-energy-absorbing components. Furthermore, the effect of the surface skin thickness on the plateau stress and strain sensitivity of the 6061 Al foam with low porosities (pct) was studied.  相似文献   

12.
电沉积法制备多层泡沫铜/镍   总被引:1,自引:0,他引:1  
采用聚氨脂泡沫为基体,经预处理、化学镀、电沉积制备了均匀分布三维网状孔结构的高空隙率多层泡沫金属铜/镍。通过电子扫描电镜(SEM)观察了泡沫的形貌,并测定了多层泡沫材料的主要物理性能。  相似文献   

13.
采用聚氨脂泡沫为基体,经预处理、化学镀、电沉积工艺制备了均匀分布三维网状孔结构的高空隙率泡沫镍。通过电子扫描电镜(SEM)观察了制备过程中泡沫的形貌,并测定了泡沫镍的主要物理性能。  相似文献   

14.
通过SiC颗粒自增粘熔体发泡法工艺制备得到泡沫铝基材料的铸锭;对制得的泡沫铝铸锭进行各个层面上不同部位的平均孔径和平均孔隙率的测定,得到了铸锭内部的孔隙率和孔径在铸锭径向和高度方向上的变化规律;并且讨论和研究了熔体未发泡区域的形成原因,得到了熔体直接发泡法制备泡沫材料时气孔的形成过程模型。  相似文献   

15.
The effect of the structure on the elastic modulus of two groups of highly porous sintered copper-based materials (foam and fiber metal) with 40 to 90% porosity is investigated. The elastic modulus of the materials is described within the sphere-rod model developed for foam plastic with an open porosity; the model uses an equation containing a structure parameter. Translated from Poroshkovaya Metallurgiya, Nos. 3/4(412), pp. 79–83, March–April, 2000.  相似文献   

16.
用正交实验法则研究了泡沫铝的渗流铸造工艺,分析了粒子预热温度、浇注温度和渗铸压力对金属液充型过程的影响。认为合理选择粒子预热温度是生产泡沫金属铸件的前提,适当提高浇注温度是保证泡沫组织均匀良好的关键,保持适度的渗铸压力有利于提高材料的孔隙度和工艺稳定性。  相似文献   

17.
Lost foam casting (LFC) process has several advantages when compared to conventional sand casting techniques however formation of large amount of gaseous products during foam pattern removal increases porosity fraction of castings, especially for low melting point A1 and Mg alloys. In this study pattern coating and vacuum assistance at the time of filling were investigated and their characterizations in constant casting conditions have been determined. Green sand moulding technique was carried out for all moulds because it is necessary to obtain sound castings by using expandable polystyrene (EPS) foam patterns without refractory coating. Simple prismatic shaped patterns were prepared from cutting pieces from an EPS isolation board. A well-known A380 Al-Si-Cu casting alloy was cast at 730°C. As expected, pattern coating reduce the gas permeability and increase porosity however metal penetration into sand grains and surface roughening occurs without coating. Slight vacuum were applied to moulds with vacuum casting machine until solidification. Vacuum assistance enhanced gas removal and it has clear effect on decreasing porosity.  相似文献   

18.
Abstract

Closed cell copper foams have been produced through accumulative roll bonding (ARB) using calcium carbonate (CaCO3) as blowing agent. Effects of temperature, time and number of rolling passes on the final porosity of the foam have been investigated. The foam with highest porosity has been achieved at 1100°C for soaking time of 3 min. Structure of composite has also been studied by optical and electron microscopy. The result shows that increasing the number of rolling passes reduces the size of powder and homogeneously distributes the particles within the copper substrate. By reducing the size of the particles, free surfaces of particles increase and the gas releasing sites in the foams are enhanced. Consequently, the final porosity of the composite is enhanced as well. The closed-pore foams have also been examined by modal analysis. It has been found that higher porosity of the final foams results in higher natural frequency and damping index.  相似文献   

19.
采用化学镀———电沉积———热处理工艺制备了泡沫银 ,其技术指标为 :银含量 >99% ;铁含量 <0 0 1% ;抗拉强度 >1 2 5MPa ;孔隙率 95 %~ 98% ;比表面积 >1 0m2 /g。考察了电沉积和热处理的工艺技术条件对泡沫银性能的影响。把制得的泡沫银用作甲醇氧化制备甲醛的催化剂 ,甲醇转化率为 96%~ 98% ,甲醛产率为 92 %~ 95 %。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号