首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
江杰  王翔 《包钢科技》2015,41(1):60-62
通过介绍包钢热轧生产线温度采集点的分布,引出温度参数在轧制模型控制的应用。通过对卷取温度控制中两种冷却方式的分析,得出了有效利用层流冷却,控制带钢表面温度,使冷却过程避开金属相变点,实现稳定组织结构,达到改善板材组织的目的,明确了采集温度在实现模型控制中的重要位置。  相似文献   

2.
热轧带钢在冷却过程中的内应力解析   总被引:6,自引:1,他引:5  
蔡正  王国栋  刘相华  赵昆  袁建光 《钢铁》2000,35(6):33-36,40
针对热轧带钢的冷却过程,开发了温度、相变的内应力的耦合解析模型,该模型采用有限元法,同时考虑了相变的温度依存性、相变潜热、相变膨胀。通过该数值解析模型,能够模拟热轧带钢在冷却过程中温度一组织内应力的演变过程,计算结果与实测值符合良好。  相似文献   

3.
卞皓  邵健  夏小明  邱增帅  何安瑞 《钢铁》2016,51(11):49-54
 研究残余应力减量化技术可提高热轧带钢板形质量。有限元技术及相应的试验验证已广泛应用于工业生产,采用该方法对带钢层流冷却过程中的温度、相变及应力耦合进行求解,对于分析带钢轧后冷却不均、应力应变不均及翘曲具有重要意义。基于ABAQUS建立热轧带钢在密集冷却工艺条件下的有限元模型,实现温度、相变和应力三者的耦合计算,并进行温度测试、材料微观组织测试及应力测试等多个试验验证。计算结果表明,减小带钢进入层流冷却前的初始温差、采用边部遮挡技术对减少带钢残余应力均具有积极的意义。通过一个改善初始温差分布进而改善带钢残余应力的实例,验证了提出的方法和结论的正确性。  相似文献   

4.
余伟  王乙法 《工程科学学报》2016,38(12):1734-1740
针对卷取温度为500℃的12 mm厚X70管线钢热轧带钢,利用MARC有限元软件建立层流冷却过程中的热-力-相变耦合的数学模型,计算两种下上冷却水比时层流冷却过程中温度场、应力、应变、相变体积分数和翘曲度随时间的变化.结果表明:1.25水比的冷却过程中,厚度方向上各面的冷却速度不一致,导致水冷前期带钢上下表面应变不同,带钢会产生向上的翘曲,冷却过程中边部最大的翘曲量达到21.84 mm;水冷后期带钢板形会逐渐恢复平直,但由于水冷过程中发生塑性变形,终冷时厚度方向上贝氏体含量的差异,卷取时带钢边部依然有-9 mm的翘曲量.上下表面的不均匀冷却是引起翘曲的根本原因.在保证X70管线钢性能条件下,采用1.58的下上水比工艺,卷取时边部翘曲量仅为-0.58 mm,合适的下上水比能大幅度减小层流冷却过程中带钢的横向翘曲.   相似文献   

5.
针对凌钢中宽热轧带钢厂原有带钢冷却系统存在的问题,结合热轧带钢冷却的机理,开发了热轧带钢层流冷却系统,应用温度控制模型实现钢卷温度自动控制,冷却精度高。  相似文献   

6.
热轧带钢组织性能预报模型及应用   总被引:1,自引:0,他引:1  
王蕾  唐荻  宋勇 《钢铁》2016,51(11):73-78
 基于物理冶金理论,研究了热轧带钢过程中的奥氏体晶粒长大模型、奥氏体再结晶模型、奥氏体相变模型以及力学性能模型。奥氏体再结晶模型中,通过研究位错密度的变化来描述由于再结晶不完全造成的变形抗力的变化。奥氏体相变模型中,通过碳扩散理论描述了奥氏体-铁素体相界面随冷却过程的变化规律。基于热轧带钢过程中的冶金物理模型,开发热轧带钢组织性能预报系统。系统包括4个模块,分别用于计算板坯在加热炉、粗轧精轧、层流冷却和卷取完成各阶段的组织和力学性能参数,生产工艺是该系统的重要输入参数。利用该系统对某钢厂实际生产过程的组织性能进行预报,预报的力学性能和现场实测值有较好的一致性。  相似文献   

7.
带钢层流冷却过程数值模拟及卷取温度预测分析   总被引:2,自引:0,他引:2  
结合宝钢2050热连轧层流冷却生产线,建立了带钢层流冷却过程传热数学模型,同时考虑相变潜热对带钢温度的贡献。采用实测的卷取温度,修正了带钢表面换热系数模型,模拟研究了冷却模式、速度、厚度等对卷取温度的影响。结果表明:卷取温度计算值与实测值的标准差小于14℃;相变潜热对卷取温度的贡献为28℃;冷却模式、速度、厚度是影响卷取温度的重要因素;该模型能够满足宝钢2050热连轧层流冷却卷取温度的预报精度,对实际生产具有较好的指导性作用。  相似文献   

8.
针对带钢冷却特点,建立了带钢瞬态热传导仿真模型,采用有限差分法对1800mm热连轧机带钢终轧速度、带钢终轧温度、冷却水温度等因素对带钢层流冷却后温度的影响进行了仿真分析。得到的结果对于认识热轧带钢卷取温度的变化规律具有一定的应用价值。  相似文献   

9.
以薄板坯连铸连轧流程为研究对象,对薄板坯连铸凝固传热过程、辊底加热炉加热过程、热轧过程和层流冷却过程进行数值计算,得到4个过程薄板坯的温度场分布。结果表明:通过调节凝固传热过程二冷区水量分配比有助于层流冷却过程节水;适当增大拉坯速度有利于加热炉加热过程节能,且热轧过程和层流冷却过程带钢表面温度均得到提高;与层流冷却方式一相比,相同水量条件下冷却方式二使得终冷温度降低了2.9℃,这一冷却方式相同终冷温度要求下有利于节水。  相似文献   

10.
张鹏  程树森  常崇明  李积鹏  郑跃强 《钢铁》2014,49(10):51-57
 建立了热轧带钢层流冷却过程中温度场的三维有限元模型,对3 mm厚带钢轧后冷却过程带钢温度场进行模拟计算,得出卷取温度比现场测量值低9.5 ℃,相对误差为1.42%,验证了模型和假设的合理性。研究了上喷嘴直径对带钢温度的影响,带钢上表面宽度方向上存在2种不同的冷却区域:位于喷嘴正下方层流冷却过程中交替经过冲击区和平流区的区域和位于两喷嘴之间层流冷却过程中只经过平流区的区域,这造成带钢宽度方向上温度分布不均匀。计算结果表明,喷水量保持不变的情况下,存在一个最佳喷嘴直径,使带钢宽度方向上温度分布更均匀。喷水速度保持不变,增加喷嘴的直径有利于带钢宽度上方温度均匀,但增加了喷水量,降低了带钢的卷取温度。  相似文献   

11.
After water cooling,there is a big temperature difference between the center and the surface of strip,which leads to the heat transfer from the center to the surface,and the surface temperature can rise in a short time.The finite element method was used to simulate the phenomena of re-reddening on the surface of strip and to analyze the temperature field of hot rolled strip during laminar cooling,and the periodical variation curve of the cooling rate was obtained during water cooling and subsequent re-reddening.The results show that the critical line of the cooling rate is at 1/3 of the half-thickness from the strip surface.The regression model of the relation of re-reddening temperature,time,and distance from the surface was obtained in the re-reddening region.Re-reddening regularity on the surface of strip under the condition of different thickness and cooling rate was also studied.  相似文献   

12.
The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculation of the drop in strip temperature by both water cooling and air cooling is summed up to obtain the change of heat transfer coefficient. It is found that the learning coefficient of heat transfer coefficient is the kernel coefficient of coiler temperature control (CTC) model tuning. To decrease the deviation between the calculated steel temperature and the measured one at coiler entrance, a laminar cooling control self-learning strategy is used. Using the data acquired in the field, the results of the self-learning model used in the field were analyzed. The analyzed results show that the self-learning function is effective.  相似文献   

13.
冷却集管及喷嘴的结构和安装对于热轧板带层流冷却效果有重要的影响。利用ANSYS有限元分析软件,对用于热轧板带层流冷却系统的U形集管和用于中厚板层流冷却系统的直集管的流场进行了三维稳态数值模拟,得到了管内流体的流动特性。同时,运用流体力学原理,对冷却管路系统进行了理论计算,得到了喷嘴出口处的水流速度以及作用于钢板表面的冲击压力。此外,利用标准C语言对计算过程编制程序。计算结果有利于提高冷却的均匀性及效率,对于层流冷却系统集管装置的设计及选型具有一定的指导作用。  相似文献   

14.
层流冷却过程中带钢温度场数值模拟   总被引:1,自引:0,他引:1  
分析了带钢层流冷却过程中的传热,并利用有限元法对层流冷却过程中带钢温度场进行了模拟计算。结果表明:随着轧件厚度的减薄,在带钢厚度方向上的温差逐渐减小;冷却速度不同时,带钢表面温度和中心温度的变化趋势以及波动幅度相应发生变化。在进行模型计算时,应合理考虑带钢厚度及内部热传导的影响。这对提高数学模型的精度,控制卷取温度,提高产品质量以及指导生产具有重要意义。  相似文献   

15.
热轧带钢新一代TMCP技术以超快速冷却为核心,通过冷却系统从空冷至超快冷的无级调控,利用广阔 的冷速范围及精准的温度控制,实现对带钢轧后冷却路径进行灵活的控制。有利于细晶强化、析出强化、固溶强 化、位错强化、相变强化的最佳匹配,从而使得热轧带钢产品获得优良的综合性能。新一代TMCP工艺技术具备低 成本、高效率、高均匀性、高控制精度等特征,是轧制工艺发展的重要领域之一。随着人们对带钢产品性能要求的 不断提高以及资源的日益枯竭,以超快速冷却为核心的热轧带钢新一代TMCP技术具有广阔的发展前景。  相似文献   

16.
根据极薄规格带钢生产工艺情况,分析出带钢头部飞起、起套现象的产生原因包括带钢速度、带钢板型及层流冷却水的影响。通过对精轧机速度、层流辊道超前速度及冷却水等方面进行改进,提高了薄规格轧制的稳定性,成功生产出了热轧极限薄规格带钢。  相似文献   

17.
层流冷却中带钢温度分布模型的开发   总被引:7,自引:0,他引:7  
蔡正  王国栋  刘相华  谷力军  解旗 《钢铁》1998,33(8):31-34
在热轧带钢层冷却控制数学模型中,由于忽略带钢内部的热传导而使卷取温度控制不良,本文采用离线二维数模计算带钢沿厚度方向上的温度分布,在线控制中给予补偿,取得较好的效果。  相似文献   

18.
CSP线高强度细晶热轧板的混晶和变形拉长晶粒的成因   总被引:1,自引:0,他引:1  
对CSP线生产的高强度细晶热轧板的混晶和拉长晶粒的成因进行了分析,用有限元分析法模拟了热轧带钢的变形区的剪切应变场和温度场,用Gleeble实际模拟轧制工艺和组织变化。结果表明,CSP线高强度细晶热轧板的混晶和拉长晶粒的形成与钢板轧制过程中的钢板表层的变形场及温度场有关,也与先析出铁素体的形成后再进行轧制变形的过程有关;采用奥氏体深过冷轧制,既保证得到细晶粒又避免产生混晶和被变形拉长的晶粒。新的CSP轧制工艺,成功地生产了高强度高成形性细晶粒C-Mn热轧板。  相似文献   

19.
张亮亮  于洋  李晓军  史震 《中国冶金》2022,32(12):106-112
为了探究卷取过程热轧带钢的氧化铁皮和组织性能的变化规律,采用扫描电镜、电子探针、光学显微镜、透射电镜和拉伸试验机等研究了不同卷取温度和冷却方式对600 MPa级热轧带钢表面质量和组织性能的影响。结果表明,650、600 ℃ 卷取温度下,与缓慢冷却方式相比,采用快速冷却方式可有效改善热轧带钢表面氧化铁皮的结构,使氧化铁皮中FeO比例提高10%~15%,氧化铁皮厚度下降25%~30%,同时有效减弱热轧带钢表面氧化铁皮与基体界面硅元素和锰元素富集;不同冷却工艺下热轧带钢中的晶粒尺寸相近;650 ℃卷取+快速冷却工艺下热轧带钢的屈服强度最高,试样断口的位错密度最高,但断后伸长率并未明显下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号