首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microstructure and mechanical properties of aged Mg-10Y-2.5Sm alloy were investigated. The results showed that the microstructure of the alloy consisted of α-Mg matrix and Mg24Y5 phase, and fine Mg24Y5 particles distributed in a-Mg matrix uniformly and dispersedly. Sm enhanced α-Mg matrix and Mg24Y5 phase by solid solution effect. At 200-300 °C, the ultimate tensile strengths were more than 200 MPa and the elongations were about 3%. Compared with those at room temperature, the mechanical properties had no obvious changes.  相似文献   

2.
The microstructure and properties of the Mg-9Y-1MM-0.6Zr alloy were studied by scanning electron microscopy, optical microscopy, transmission electron microscopy, hardness and tensile testing. Homogeni...  相似文献   

3.
The microstructures and mechanical properties of the Mg-7.68Gd-4.88Y-1.32Nd-0.63A1-0.05Zr magnesium alloy were investigated both in the as-cast condition and after homogenization heat treatment from 535 to 555 ℃ in the time range 0-48 h by op- tical microscopy, scanning electron microscopy and hardness measurement. The as-cast alloy consisted of ct-Mg matrix, Mgs(Y0.5Gd0.5) phase which is a eutectic phase, strip of Al2(Y0.6Gd0.4) phase, little A13Zr and Mg(Y3Gd) phase. With the increasing of homogenization temperature and time, the Mgs(Y0.5Gd0.5) phase was completely dissolved into the matrix. The Al2(Y0.6Gd0.4) phase was almost not dissolved which impeded grain boundaries motion making the grain size almost not changed in the process of ho- mogenization. The optimum homogenization condition was 545 ℃/16 h. The tensile strength increased, yield strength decreased and the plasticity improved obviously after 545 ℃/16 h homogenization treatment.  相似文献   

4.
采用Gleeble-1500型热模拟机在变形温度为360~480℃、应变速率为0.01~10 s-1、真应变为0~0.7的条件下,研究Mg-12Gd-3Y-0.6Zr合金二次挤压过程的热变形行为,获得其热变形工艺参数,并分析热变形后的显微组织。结果表明:合金的峰值应力随应变速率的增大而提高,随应变温度的升高而降低;在变形温度、应变速率相同的情况下,一次热模拟的峰值应力均大于二次热模拟(450℃,10 s~(-1)除外);合金二次挤压过程的流变应力可以采用含Zener-Hollomon参数的双曲正弦函数形式来描述;由于二次热模拟试样中位错及晶界运动增强,使二次热模拟的激活能(Q)、应力指数(n)均小于一次热模拟的相应参数,导致二次挤压较一次挤压容易发生再结晶。  相似文献   

5.
Age hardening,microstructure and mechanical properties of Mg-xY-1.5MM-0.4Zr (x=0,2,4,6 wt.%) alloys (MM represents Ce-based misch-metal) were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the formed precipitates being responsible for age hardening changed from fine hexagonal-shaped equilibrium Mg12MM phase to metastable β’ phase with bco crystal structure when Y was added into Mg-1.5MM-0.4Zr alloy,and the volume fraction of precipitate phases also increased. With the increase of Y content in Mg-Y-1.5MM-0.4Zr alloys,it was found that the age hardening was enhanced,the grain sizes became finer and the tensile strength was improved. The cubic-shaped β-Mg24Y5 precipitate phases were observed at grain boundaries in Mg-6Y-1.5MM-0.4Zr alloy. It was suggested that the distribution of prismatic shaped β’ phases and cubic shaped β-Mg24Y5 precipitate phases in Mg matrix might account for the remarkable enhancement of tensile strength of Mg-Y-MM-Zr alloy. It was shown that the Mg-6Y-1.5MM-0.4Zr alloy was with maximum tensile strength at aged-peak hardness,UTS of 280 MPa at room temperature and 223 MPa at 250 oC,respectively.  相似文献   

6.
The effects of minor Zn(0.2 at%,0.4 at%,0.6 at%) on the microstructures and mechanical properties of Mg-1.4 Gd-1.2 Y-0.15 Zr(at%) alloys were systematically explored.Results reveal that increasing Zn content leads to the increase of the intergranular phases and the change of their composition from Mg_24(Gd,Y)_5 phase and(Mg,Zn)_3(Gd,Y) phase to 18 R-LPSO phase and(Mg,Zn)_3(Gd,Y) phase.Mg_24(Gd,Y)_5 phase is body-centered cubic structure and shares the same lattice constant with Mg_24Y_5 while(Mg,Zn)_3(Gd,Y)phase is face-centered cubic structure with lattice constant of 0.72 nm,slightly lower than Mg_3Gd.18RLPSO structure is identified to be monoclinic with c-axis not strictly vertical to the bottom surface but93.5°.The growth patterns of intergranular phases change from the divorced growth to coupled growth as compositions change.Moreover,the mechanical performance improves with Zn rising,ascribed to the decrease of brittle phases at grain boundaries and the increase of LPSO structure phases.  相似文献   

7.
The microstructures and strengthening mechanisms of the Mg-8.2 Gd-4.6 Y-1.5 Zn-0.4 Zr(wt%) alloy with long-period stacking ordered(LPSO),β' and γ type phases were systematically studied.The results show that the LPSO with lamellar and block structures forms near the grain boundaries.The grains are clearly refined,and the 18 R LPSO phase is oriented along the extrusion direction after extrusion.Some particles also precipitate from the Mg matrix dynamically.The extruded alloy exhibits a remarkable agehardening response,and mechanical properties,with a tensile strength(TS) of 449 MPa,yield strength(YS) of 362 MPa,and elongation of 7.9% obtained in the peak-aged alloy.The strengthening mechanisms of the alloy in different states are discussed.Grain boundary and precipitation strengthening are the main strengthening mechanisms for the peak-aged alloy.  相似文献   

8.
The microstructure and tensile properties of the as-cast and solution treatment Mg-4.5Zn-1Y-xNd-0.5Zr (x=0, 1 wt.%, 2 wt.%, 3 wt.%) alloys were investigated. The results showed that the microstructure of Mg-4.5Zn-1Y-0.5Zr alloy consisted of α-Mg, Zn-Zr, W (Mg3Y2Zn3) and I (Mg3YZn6) phases. With the addition of Nd, I-phase disappeared and Mg3Y2Zn3 phase changed into Mg3(Nd,Y)2Zn3 phase. When the content of Nd reached 3 wt.%, T phase, i.e., ternary Mg-Zn-Nd phase, formed. In addition, with the increase of Nd content in the alloys, the secondary dendritic arm spacing decreased, while the amount of intermetallic phases increased. For as-cast Mg-4.5Zn-1Y-xNd-0.5Zr alloys, after solution treatment, microsegregation was eliminated and the shape of eutectic structure of α-Mg+W transformed from lamellar into spherical. The tensile strength and elongation of Mg-4.5Zn-1Y- 3Nd-0.5Zr alloy were increased from 219.2 MPa and 11.0% to 247.5 MPa and 20.0%, respectively.  相似文献   

9.
The microstructures of Mg_(96.17)Zn_(3.15)Y_(0.50)Zr_(0.18) alloys solidified under 2-6 GPa high pressure were investigated by employing SEM(EDS) and TEM.The strengthening mechanism of experimental alloy solidified under high pressure is also discussed by analyzing the compressive properties and compression fracture morphology.The results show that the microstructure of experimental alloy becomes significantly fine-grained with increasing GPa level high pressure during solidification process,and the secondary dendrite arm spacing reduces from 40 μm at atmospheric pressure to 10 μm at 6 GPa pressure.The morphology of the second phases changes from the net structure by the lamellar-type eutectic structure at atmospheric pressure to discontinuous thin rods or particles at 6 GPa pressure.Besides,the solid solubility of Zn in the Mg matrix is improved with the increase of the solidification pressure.Compared with atmospheric-pressure solidification,high-pressure solidification can improve the strength of the experimental alloy.The compressive stre ngth is improved from 263 to 437 MPa at 6 GPa.The fracture mechanism of the experimental alloy changes from cleavage fracture at atmospheric pressure to quasi-cleavage fracture at high pressure.The main mechanism of the strength improvement of the experimental alloy includes the grain refinement strengthening caused by the refinement of the solidification microstructure,the second phase strengthening caused by the improvement of the morphology and distribution of the second phases,and solid solution strengthening caused by the increase of the solid solubility of Zn in the Mg matrix.  相似文献   

10.
Current commercial magnesium extrusion alloys do not offer desirable combinations of strength, ductility, and extrusion speed for automotive structural applications. The effect of small additions of cerium (Ce) to pure magnesium (Mg) and Mg-3 pct Al alloy extruded tubes has been studied. The results suggest that 0.2 pct Ce addition can significantly improve the extrudability and mechanical properties of the Mg extrusions. The improvement in mechanical properties is due to grain refinement and dispersion strengthening provided by the Mg12Ce particles and the beneficial texture obtained. Higher Ce contents further increase strength, but significantly reduce ductility and cause excessive surface oxidation during extrusion. The beneficial effect of 0.2 pct Ce on mechanical properties of pure Mg is not observed when it is added to Mg-3 pct Al alloy, due to the higher affinity of Ce to Al to form the Al11Ce3 phase in the Mg-Al-Ce ternary alloys. The Mg-0.2 pct Ce alloy is a promising base alloy for further development in automotive applications; however, Al should be avoided in Mg-Ce–based extrusion alloys.  相似文献   

11.
为了探究Al元素在不同冷却速度下对Mg-9Gd合金组织细化效果及其对后续固溶处理的影响,利用铁模和铜模重力铸造制备了铸态Mg-9Gd-0.8Al合金,之后进行10~50 h的固溶处理。采用OM、SEM、TEM、EDS及XRD等方法研究了冷却速度对Mg-9Gd-0.8Al合金凝固和固溶行为及组织力学性能的影响。结果表明,铁模和铜模制备的铸态Mg-9Gd-0.8Al合金组织均由α-Mg基体、花瓣状(Mg, Al)3Gd相、细条状Mg5Gd相和方块状Al2Gd相组成。铜模相比于铁模冷却速度加快,制备的合金基体晶粒和第二相显著细化,第二相体积分数总量增长幅度达56.1%。2种模具制备的合金固溶10 h后,Mg5Gd相溶解、(Mg, Al)3Gd相部分溶解、高熔点Al2Gd相无变化,晶粒内析出层片状(Mg, Al)2Gd新相,第二相总量趋于相等。固溶50 h后,(Mg, Al)2Gd层片相回溶,残余(Mg, Al)3Gd相发生熔断呈颗粒状,铜模制备的合金第二相颗粒比铁模的更细小。细晶强化和第二相强化使铜模制备的铸态合金性能较铁模制备的合金性能大幅提高,固溶10 h后合金屈服强度提升,伸长率基本不变。固溶处理50 h后,固溶强化、细晶强化和细小颗粒的第二相强化使铜模制备的固溶50 h态合金获得最优性能,屈服强度、抗拉强度和伸长率分别为141 MPa、234 MPa和22.4%。  相似文献   

12.
为了探究Al元素在不同冷却速度下对Mg-9Gd合金组织细化效果及其对后续固溶处理的影响,利用铁模和铜模重力铸造制备了铸态Mg-9Gd-0.8Al合金,之后进行10~50 h的固溶处理。采用OM、SEM、TEM、EDS及XRD等方法研究了冷却速度对Mg-9Gd-0.8Al合金凝固和固溶行为及组织力学性能的影响。结果表明,铁模和铜模制备的铸态Mg-9Gd-0.8Al合金组织均由α-Mg基体、花瓣状(Mg, Al)3Gd相、细条状Mg5Gd相和方块状Al2Gd相组成。铜模相比于铁模冷却速度加快,制备的合金基体晶粒和第二相显著细化,第二相体积分数总量增长幅度达56.1%。2种模具制备的合金固溶10 h后,Mg5Gd相溶解、(Mg, Al)3Gd相部分溶解、高熔点Al2Gd相无变化,晶粒内析出层片状(Mg, Al)2Gd新相,第二相总量趋于相等。固溶50 h后,(Mg, Al)2Gd层片相回溶,残余(Mg, Al)3Gd相发生熔断呈颗粒状,铜模制备的合金第二相颗粒比铁模的更细小。细晶强化和第二相强化使铜模制备的铸态合金性能较铁模制备的合金性能大幅提高,固溶10 h后合金屈服强度提升,伸长率基本不变。固溶处理50 h后,固溶强化、细晶强化和细小颗粒的第二相强化使铜模制备的固溶50 h态合金获得最优性能,屈服强度、抗拉强度和伸长率分别为141 MPa、234 MPa和22.4%。  相似文献   

13.
The solidification microstructure and mechanical properties of as-cast Mg-Al-Sn alloys have been investigated using computational thermodynamics and experiments. The as-cast microstructure of Mg-Al-Sn alloys consists of α-Mg, Mg17Al12, and Mg2Sn phases. The amount of Mg17Al12 and Mg2Sn phases formed increases with increasing Al and Sn content and shows good agreement between the experimental results and the Scheil solidification calculations. Generally, the yield strength of as-cast alloys increases with Al and Sn content, whereas the ductility decreases. This study has confirmed an early development of Mg-7Al-2Sn alloy for structural applications and has led to a promising new Mg-7Al-5Sn alloy with significantly improved strength and ductility comparable with commercial AZ91 alloy.  相似文献   

14.
A yield phenomenon was firstly reported in an extruded Mg-6.8Y-2.5Cu alloy and the corresponding microstructure was also investigated in this work,The cast alloy is mainly composed of α-Mg,18R long period stacking order(LPSO) phase,eutectic phase(Mg20Cu4Y1),and Mg2Cu phase.The 18R LPSO phase at the dendritic grain boundary transforms into the 14H LPSO phase in the grain interior during homogenization.After extrusion,the grain size of the homogenized al...  相似文献   

15.
The minimum creep rate and microstructures of aged samples of Mg-Gd-Zr alloys, with and without alloying additions of Zn and/or Y, have been investigated in the present work. The creep tests were performed at 523 K (250 °C) and under 80 to 120 MPa, and the microstructures before and after creep tests were characterized using scanning electron microscopy, transmission electron microscopy, and the high-angle annular dark-field imaging technique. It is found that dislocation creep predominates in the steady-state creep stage for all alloys. The Mg-2.5Gd-0.1Zr (at. pct) alloy, strengthened by the β′ precipitates, has minimum creep rates in the range 1.0 × 10?8 to 3.8 × 10?8 s?1 under 80 to 120 MPa. The addition of 1.0 at. pct Zn to the Mg-2.5Gd-0.1Zr alloy reduces the 0.2 pct proof strength and increases the minimum creep rate, resulting from the formation of γ′ basal plates at the expense of β′ precipitates. The replacement of 1.0 at. pct Gd by Y in the Mg-2.5Gd-1.0Zn-0.1Zr alloy leads to a substantial reduction in the minimum creep rate, even though it does not cause much change to the 0.2 pct proof strength. The reduced minimum creep rate is attributed to a much lower diffusivity of Y atoms than Gd in the solid magnesium matrix. An increase in the Gd content from Mg-1.5Gd-1.0Y-1.0Zn-0.1Zr to Mg-2.5Gd-1.0Y-1.0Zn-0.1Zr leads to a denser distribution of precipitates, a higher 0.2 pct proof strength, and a further reduction in the minimum creep rate.  相似文献   

16.
In this work,the effects of Ce addition(0,0.1 wt%,0.3 wt%,0.5 wt%and 0.7 wt%)on the evolution of microstructure and mechanical properties of 6111 Al alloy and strengthening mechanism of 6111 Al-Ce alloy were systematically investigated by a polarizing microscope,a scanning electronic microscope,an energy dispersive spectroscope and a high-resolution transmission electron microscope.The results indicate that with 0.3 wt%Ce addition,theα-Al grains show the equiaxed crystal morphology with the average size decreasing from 137 to 57μm and numerous small AlCeSi phases with lump-like or platelike morphology are distributed closely along the grain boundary.The peak yield strength,ultimate tensile strength and elongation of 6111 Al-Ce alloy reach to 279 MPa,316 MPa and 12.1%,respectively,which is attributed to the grain refinement strengthening and the formation of nanosized Al11Ce3 precipitates.Eventually,this investigation gives us instructive suggestion to prepare the new kind of aluminum alloy with high strength and high ductility.  相似文献   

17.
Recrystallization and grain growth in Mg-4.9Zn-0.7Zr and Mg-4.9Zn-0.9Y-0.7Zr alloys as a function of temperature on deformation were investigated with regards to hot rolling and annealing. The influence of yttrium addition on the microstructure was examined by X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicated that yttrium addition promoted nucleation of recrystallization during hot rolling process. The grain size of Mg-4.9Zn-0.7Zr alloy samples grew significantly with annealing temperature (300-400 ℃) and holding time (0-120 min), while the microstructure of the alloy with yttrium addition remained unchanged and fine. The activation energy of grain boundary migration for Mg-4.9Zn-0.9Y-0.7Zr alloy samples (56.34 kJ/mol) was higher than that for Mg-4.9Zn-0.7Zr (42.66 kJ/mol) owing to the pinning effect of Y-containing particles. The proposed growth models of recrysta/lized grains for the two studied alloys conformed well to E. Robert's grain-growth equation. Besides, the ultimate strength and yield strength of the alloys with yttrium addition were improved with good plasticity.  相似文献   

18.
Mg-10Gd-3Y-0.5Zr (wt pct) casting was subjected to friction stir processing (FSP) at a constant rotation rate of 800 rpm and varied travel speeds of 25, 50, and 100 mm/minute. FSP resulted in the generation of fine-grained microstructure and fundamental dissolution of coarse Mg5(Gd,Y) phase at the grain boundaries, thereby enhancing the tensile properties significantly at both room and elevated temperatures. The grain size of the FSP samples decreased with the increasing travel speed, whereas the microstructure heterogeneity with the banded structure (onion rings) became evident at a higher travel speed. Tensile elongation of the FSP samples increased as the travel speed increased, whereas the highest strengths were obtained at the medium travel speed of 50 mm/minute. Higher strengths and greater elongations were observed for the FSP samples in the transverse direction (TD) than in the longitudinal direction (LD). After post-FSP aging, the strengths of the FSP samples were increased significantly with the TD and LD exhibiting the same strengths; however, the elongation was decreased remarkably with the TD having higher elongation than the LD. A variation of the tensile properties was discussed in detail based on the microstructure heterogeneity and fracture surfaces.  相似文献   

19.
Xu  C.  Fan  G. H.  Nakata  T.  Liang  X.  Chi  Y. Q.  Qiao  X. G.  Cao  G. J.  Zhang  T. T.  Huang  M.  Miao  K. S.  Zheng  M. Y.  Kamado  S.  Xie  H. L. 《Metallurgical and Materials Transactions A》2018,49(5):1931-1947
Metallurgical and Materials Transactions A - An ultra-strong and ductile Mg-8.2Gd-3.8Y-1Zn-0.4Zr (wt pct) alloy was developed by using hot extrusion to modify the microstructure via...  相似文献   

20.
稀土元素Sm对Mg-Zn-Y合金组织结构和力学性能的影响   总被引:1,自引:0,他引:1  
制备了Mg-6Zn-1.5Y-0.8Zr-xSm(x=0,1,2,3)系列合金,研究了稀土元素Sm对Mg-6Zn-1.5Y-0.8Zr合金组织结构和力学性能的影响.通过金相显微镜、扫描电镜、EDS、XRD等观察和分析了合金的微观形貌和组织结构,测量了合金抗拉强度、屈服强度和伸长率等力学性能.结果表明:合金中添加稀土元素Sm后晶粒有了明显的细化,随着Sm元素含量的增加,晶粒细化效果更为明显;通过XRD分析,添加Sm元素后,合金中并没有出现新的含Sm的物相,通过扫描电镜和EDS分析表明,合金中加入的Sm置换了部分Y,形成了Mg3( SmY)2 Zn3,Mg3( SmY) Zn6的相结构,Sm元素对Y的置换主要出现在Mg3( SmY) Zn6结构当中,在Mg3 (SmY) Zn6相结构出现较少;力学性能测试结果表明,随着Sm含量增多,合金晶粒细化,细晶强化作用明显,合金屈服强度逐渐增大,而抗拉强度和伸长率在Sm含量为2%时达到最大,比未添加Sm元素时提高约15%以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号