首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
本文用P507和N235组成的协同萃取体系萃取氯化钕和氯化钆的混合稀土料液。通过研究萃取体系,协同萃取剂的配比,振荡时间及相比对萃取率的影响,研究结果表明,当P507与N235的体积比为1∶1、振荡时间10 min、相比3∶1时,协同萃取体系具有最佳萃取效果,萃取率可达90%;红外表征中萃取相出现的特征峰,可定性说明萃取反应的发生。  相似文献   

2.
P204与N235协同萃取钕的研究   总被引:2,自引:2,他引:0       下载免费PDF全文
采用非皂化的酸性萃取剂P204和碱性萃取剂N235协同萃取钕。研究了P204与N235的配比、萃取剂浓度、水相酸度、稀土浓度对P204与N235协同萃取钕的影响。结果表明,当N235与P204以体积比6∶4、协同萃取剂与煤油的体积比1∶1、pH为3.0时协同萃取钕的效果最好,随着稀土料液浓度的增大,萃取量先增大后趋于平稳,并且最大饱和容量达28g/L(REO),大于P204单独萃取钕的饱和容量。  相似文献   

3.
用P204和P350组成的二元协同萃取体系萃取氯化铈稀土料液,研究萃取体系的震荡时间、相比及稀土离子浓度对萃取率的影响,结果表明,当P204与P350体系的振荡时间9 min、相比1:1、稀土离子浓度为0.1 mol/L时,协同萃取体系具有最佳萃取效果,此时萃取率为71%;红外表征中萃取相出现的特征峰,可定性说明萃取反...  相似文献   

4.
本文用P204和TBP组成的协同萃取体系萃取氯化铈的混合稀土料液,主要研究目标是如何从氯化铈稀土溶液中高效率萃取分离稀土元素,更好减少对环境的污染,得到更为纯净的稀土元素,研制了新的协同萃取体系,是一项成熟的绿色环保工艺即P204-TBP体系,可直接用于稀土的萃取,回收稀土元素,实现循环利用。本实验的有机相为P204和TBP的混合试剂,水相为氯化铈溶液,通过观察萃取体系中P204的用量、振荡时间、相比以及稀土铈的浓度等因素对萃取铈的影响,得到P204和TBP所占比的具体分析数值。  相似文献   

5.
传统的稀土元素分离提取工艺常采用单一的酸性磷酸酯类萃取剂,如使用常见的P507、P204等萃取剂来萃取稀土元素,需要先进行皂化预处理,皂化反应会产生污染性、刺激性严重的浓氨水,并产生氨氮废水及其他废水,采用这种方法会对环境造成严重污染。本实验采用P507-N235双溶剂萃取体系,以稀土铈、镨为主要萃取元素,研究对萃取稀土元素造成影响的因素,如相比、料液浓度、料液pH、震荡时间等。本实验利用两种萃取剂的不同特性进行研究,以P507来萃取稀土元素,以N235来萃取产生的H~+。经实验结果表明,P507-N235双溶剂体系协同萃取可以实现无皂化分离稀土元素,避免了实验过程中皂化反应的发生,以此来达到减轻环境污染的目的。  相似文献   

6.
研究了P204从富集稀土磷酸溶液中稀土元素钇、镧、钕的萃取行为,并考察了初始水相中P_2O_5浓度、萃取相比、萃取剂浓度、萃取时间对稀土萃取效果的影响。结果表明,低磷酸浓度、较大相比、较高萃取剂浓度和较长萃取时间有利于萃取稀土,并得到了萃取优化条件:初始水相中P_2O_5浓度10%、萃取相比V_0/V_1=3/1、萃取时间15min、P204浓度30%,在室温下萃取钇、镧、钕3种稀土,单级萃取率均可达到90%以上。  相似文献   

7.
向萃取剂Mextral204P中加入萃取剂Mextral336A构成混合萃取剂来萃取稀土元素,考察了混合萃取剂的配比、萃取时间、萃取相比、水相pH以及料液中稀土的浓度对萃取的影响。结果表明,当混合萃取剂中Mextral204P的摩尔分数为0.74时,混合萃取剂之间具有最大正协同作用,并且在萃取时间为4min、相比1∶1、料液pH=4时,萃取效果最好,最大钐负载高达23g/L。  相似文献   

8.
织金磷矿酸浸液萃取分离稀土试验研究   总被引:1,自引:0,他引:1  
研究了用溶剂萃取法从织金磷矿酸浸液中分离稀土,考察了各因素对稀土萃取率和反萃取率的影响,确定了适宜的萃取条件。结果表明:用P204作萃取剂,控制相比为3∶1、P204浓度为1.5 mol/L、初始水相P2O5质量浓度为101.20g/L、在室温下萃取15min,稀土萃取率为89.62%;在相比1∶8、6mol/L盐酸为反萃取剂、室温下反萃取10min条件下,稀土反萃取率为87.86%。  相似文献   

9.
研究了用Mextral336A和Mextral204P协同萃取稀土元素。首先考察Mextral336A、Mextral204P萃取稀土和萃取盐酸的能力,Mextral336A萃取氢离子的同时几乎不萃取稀土。Mextral204P中添加适量Mextral336A能够显著提高Mextral204P萃取稀土的能力,Mextral204P与Mextral336A最佳体积比为2∶3;对于协同体系,水相初始pH2.75时,从水相中萃取氢离子;水相初始pH2.75后,有机相向水相释放一定量氢离子;水相初始pH=2.75时,既不从水相吸收氢离子也不向水相释放氢离子;稀土钐的萃合物为SmA(HA_2)_2·(R_3N)·(R_3NHCl)——3,混合有机相具备较好的反萃取性能,且可循环利用。  相似文献   

10.
《稀土》2015,(6)
P_(507)-N_(235)双溶剂萃取体系利用P_(507)萃取稀土离子、N_(235)萃取酸的特性实现了稀土的无皂化萃取分离。在振荡时间5 min、相比1∶1、料液pH值2~3工艺条件下,P_(507)-N_(235)体系对稀土的萃取能力随着原子序数的增大而增大,符合"正序萃取"规律,对稀土的萃取量随着料液浓度的增加而增大。在震荡时间8 min、相比1∶1、料液浓度1 mol·L~(-1)的最优萃取工艺条件下,测定了各稀土元素组之间的平均分离系数。研究结果能为P_(507)-N_(235)体系应用于实际生产提供理论依据。  相似文献   

11.
研究了一种新型酸性磷类萃取剂NA萃取中重混合稀土的性能,探讨了萃取过程中有机相的皂化度、有机相组成、混合稀土料液中杂质含量、料液初始p H对新型萃取剂萃取饱和容量的影响以及反萃过程中反萃酸度对反萃性能的影响,同时还探讨了新型萃取剂的损耗率。试验结果表明,控制混合稀土料液浓度与铝浓度比≥222,与铁浓度比≥2543、有机相的皂化度0.64~0.68 mol·L~(-1)、有机相中磺化煤油∶新型萃取剂=1∶1(新型萃取剂浓度为1.45 mol·L~(-1))及混合稀土料液初始p H=1.2的工艺条件下,萃取过程分相效果好,新型萃取剂的饱和容量大于0.20 mol·L~(-1),比传统萃取剂P507的最佳萃取饱和容量高15%~20%左右,新型萃取剂的损耗率为0.42%~0.45%;反萃过程,采用盐酸作为反萃剂,只要控制盐酸浓度为3.0 mol·L~(-1)时,负载有机相的单级反萃率即可达到98%以上;研究结果表明,该新型萃取剂,具有萃取饱和容量大、溶解损失少、循环使用性能好、反萃酸度低的特点,可以大大降低槽体有机积存量、稀土积存量和酸耗量,减少投资成本,改善工作环境,具有广泛的应用前景。  相似文献   

12.
P204和P507常用作萃取剂用于稀土浸出液的萃取,采用单一萃取剂萃取难以有效分离、富集稀土,本文利用P507萃取高浓度稀土溶液时对轻稀土萃取能力较弱而P204萃取能力强的特点,创新性提出采用P507与TBP协同萃取中重稀土,然后采用P204与TBP协同萃取轻稀土的工艺,并进行了萃取、反萃取试验,得出以下结论。在试验原料条件下,采用二级萃取工艺,当相比A/O=10/1、pH值4.0、常温、P507体积分数35%、TBP体积分数5%时,P507+TBP对中、重稀土的萃取率较佳,均能达到90%以上;采用二级萃取工艺,在P204体积分数35%、TBP体积分数5%、相比A/O=15/1、常温、萃取时间5 min的条件下,P204+TBP对轻稀土的萃取率达到97%。P507与P204的负载有机相在适当的酸性条件下,P507负载有机相经二级逆流反萃、P204负载有机相经三级逆流反萃后均可得到高浓度的稀土富集液,浓度值达到直接进入萃取分离线的要求。该研究在低能耗、低试刘消耗条件下实现了稀土提取利用及初步分离,所生产的氯化稀土溶液可以直接进入稀土分离厂进行分离提纯,为高浓度稀土回收分离提供了参考。  相似文献   

13.
采用溶剂萃取法脱除铜电解液中的杂质,在水相料液中添加助萃剂Cl-,研究Cl-作用下萃取剂N235对铋的萃取性能.考察有机相N235体积分数、水相助萃剂Cl-浓度、有机相与水相的体积比 (相比)、萃取时间、萃取温度等因素对铋萃取率的影响.研究结果表明:有机相N235体积分数、水相助萃剂Cl-浓度和相比是影响铋萃取率的主要因素;较为适宜萃取铋的条件为:水相硫酸浓度为3.0 mol/L,氯离子浓度为0.1 mol/L,萃取剂N235体积分数为20 %,相比为1:1,萃取时间为5 min.在此实验条件下,铋的一级萃取率达到97.3 %(质量分数).   相似文献   

14.
P_(204)萃取含铜酸性废水中铁的研究   总被引:3,自引:0,他引:3  
本文采用P204萃取剂对湿法炼铜酸性废水中的铁进行了萃取反萃研究。研究了混合时间、P204体积浓度和相比对萃取铁的影响,同时检测了萃取过程中水相硫酸浓度的变化。针对本试验研究的原料液,采用50%P204在相比(O/A)为9/1时进行萃取,Fe3+的萃取率达到85.96%。采用6N盐酸溶液对负载Fe3+的50%P204有机相进行反萃,当反萃相比(O/A)达到1∶9时,Fe3+的反萃率达到77.44%。  相似文献   

15.
镍电解液用P204萃取除铜   总被引:4,自引:2,他引:4  
以P204为萃取剂,从镍电解液中萃取除铜。研究了pH、相比(O/A)、P204体积浓度和振荡时间对萃取效果的影响,确定了P204萃取铜的最佳条件。结果表明:随着pH的升高,铜的萃取率增大;相比(O/A)越大萃取分离效果越好;随着P204体积浓度的升高,铜萃取率也相应的升高。室温下P204萃取铜的最佳工艺条件:P204的体积浓度15%,相比(O/A)1∶2,水相初始pH2.0,振荡时间3 min。在此最佳条件下,待处理液的一级萃取率达81.33%。反萃实验中反萃率可达84.97%。  相似文献   

16.
进行了P292与Alamine336所构成混合萃取剂用于萃取稀土试验。结果表明,两种萃取剂混合萃取稀土元素具有正协同作用,当两者按照体积比2∶3进行混合,在相比4∶1,萃取时间3min的条件下达到了较高的萃取率。对萃取稀土后的负载有机相用1.5mol/L的盐酸能够将稀土完全反萃,反萃后的有机相与等体积的中性水混合3次后,有机相得到了充分的再生。该试验具有较好的重复性和循环性。  相似文献   

17.
M5640+P204+P507萃取净化镍电解液   总被引:2,自引:0,他引:2  
对硫酸镍电解液的萃取净化除杂进行了系统研究。采用M5640对铜离子进行除杂的条件为:pH3.0,相比1∶1,萃取剂体积浓度15%,振荡时间5min,在此条件下铜离子的萃取率大于99.83%,萃余液含铜已达到5N镍电解液标准要求。去除铜离子之后,采用P204对电解液进行除杂,试验条件:pH4.0,相比2∶1,萃取剂体积浓度25%,振荡时间7min,温度20℃。萃余液再用P507萃取除杂,试验条件:用氢氧化钠溶液均相制皂75%,提高待萃液当中钴离子的含量至4.19g/L,即Co/Ni为1/10,4级萃取,控制水相pH4~5。最终萃余液中各杂质离子的含量均达到生产5N镍的电解液标准。  相似文献   

18.
研究了P204从硫酸体系萃取镓的性能,分别考察了料液酸度、萃取剂浓度、时间、浓度等对镓萃取与反萃的影响并绘制等温线,确定并模拟逆流试验过程。结果表明:料液含0.3g/L Ga^3+,pH=1.2,有机相采用20%P204(体积分数)+磺化煤油,按相比O/A=1∶3,25℃萃取8min,经过3级逆流萃取,镓萃取率可达到99.33%,负载有机相用1.0mol/L H2SO4溶液反萃,按相比O/A=10∶1,反萃温度25℃,反萃时间10min,经过3级逆流反萃,镓反萃率达98.99%,镓浓度富集近30倍。反萃液中的镓经氨水中和沉淀、焙烧后,可得到氧化镓产品。  相似文献   

19.
研究了P507-N235混合萃取剂分离石煤酸浸液中钒与铁的工艺,考察了N235/P507浓度、萃原液pH、萃取时间、相比(A/O)对钒、铁萃取率及钒铁分离效果的影响。结果表明,采用0.4 mol/L P507,0.8mol/L N235为萃取剂,磺化煤油为稀释剂,pH=1.7,萃取时间5min,A/O=5/1,经4级萃取,钒萃取率可达98.36%,而铁萃取率仅为5.78%。相对现有的P204、P507单一体系,P507-N235体系具有更好的萃取能力及钒铁分离性能。  相似文献   

20.
电解锰过程中,阳极液中的镁离子在闭路循环中会逐渐积累,使电流效率下降,能耗增大,同时也影响电解锰产品质量。研究了用P204-磺化煤油溶液萃取分离阳极液中的锰离子和镁离子,分别考察了P204体积分数、有机相皂化率、水相pH、相比等参数对锰离子和镁离子萃取率的影响。结果表明,在溶液温度35℃、P204体积分数25%、有机相皂化率50%、水相pH=4.0,Vo∶Va=2∶1的最佳条件下,经4级逆流萃取,锰离子萃取率达99.5%,镁离子萃取率为31.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号