首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
针对广泛应用的Bland-Ford-Hill冷轧轧制力工艺模型,通过挖掘现场实际数据隐含的规律,对其变形抗力和摩擦因数的模型参数进行优化,以提高轧制力计算精度。首先,推导由轧制力计算变形抗力和摩擦因数的逆计算算法,采用L-M非线性多项式回归方法对变形抗力和摩擦因数的模型参数进行优化回归计算,建立轧制力优化算法;然后,根据现场海量的实际数据,采用数据挖掘的方法,使用上述优化方法计算更加符合现场实际的变形抗力和摩擦因数的模型参数。优化结果在线运行后,轧制力精度明显提高。  相似文献   

2.
冷连轧的主要工艺参数为轧制力和前滑,而轧制力和前滑设定计算的精度取决于轧件的变形抗力和摩擦因数的精度,变形程度是影响变形抗力的一个重要因素,将所选变形抗力回归模型经过取对数等变换成线性函数,以鞍钢生产的St14钢为例,利用现场实际数据通过最小二乘来逐次拟合变形抗力回归模型中的系数。在同一轧制条件下,摩擦因数用3种不同的获得方法,其中前2种是由实测前滑值反算得到的,以使所得模型能够很好地与实际生产的数据相吻合。用回归出的3种不同变形抗力模型,分别带入轧制力迭代公式进行计算,所得轧制力基本与实测轧制力相符,其中由斯通公式拟合出的变形抗力回归模型计算出的轧制力平均误差很小,由此可以选出最优的变形抗力模型来应用于实际生产中轧制力和前滑的预设定。  相似文献   

3.
冷轧轧制力计算模型是过程控制的核心和基础,而轧制力计算的基础为变形抗力,因此提高变形抗力计算精度是提高轧制力计算精度的一条有效途径。为此,笔者首先通过实际轧制力数据反算变形抗力,然后使用数据分析软件对变形抗力进行曲线拟合。由于根据曲线拟合公式计算出的轧制力与实际轧制力存在差距,因此为了提高轧制力的设定精度,根据带钢压下率对轧制力进行了补偿。现场实际应用证明,这种方法能有效提高轧制力设定精度。  相似文献   

4.
提高冷轧过程控制轧制力模型的设定精度   总被引:6,自引:0,他引:6  
选择考虑冷轧带钢轧制过程变形区金属塑性变形和入、出口弹性变形的Bland—Ford—Hill模型作为冷轧过程控制轧制力模型并进行分析,确定出变形抗力和摩擦系数是影响轧制力最主要的两个因素。提出用间接法(变形抗力模型和摩擦系数模型的白适应学习)和直接法(轧制力模型本身的自适应学习)来提高轧制力模型的设定精度。实际应用结果表明,上述两种方法的综合效果使轧制力模型设定精度明显提高且性能稳定,可满足在线控制的需求。  相似文献   

5.
羌菊兴  凌鹰鹤  舒萦 《宝钢技术》2010,(2):54-57,69
建立一套可靠的离线模型调试工具,为实际生产提供技术依据十分重要。依据冷连轧轧制力模型公式、辊缝模型公式、轧辊压扁半径计算模型等公式,在EXCEL下建立了各个模型之间的关系。通过先调整变形抗力参数,再调整摩擦因数可以使轧制力自适应系数达到1;通过采集实际的轧制力,用实际轧制力公式反推摩擦因数,达到调整模型参数的目的。  相似文献   

6.
陈金山  王君  曹勇 《中国冶金》2016,26(6):51-56
针对冷连轧过程控制系统的模型设定计算的特点与需求,建立了轧制力、前滑、扭矩和辊缝自适应系数的计算模型,同时给出了冷连轧过程摩擦因数和变形抗力参数的反馈计算模型,进而完善和优化冷连轧轧制参数模型。为实现实测数据的采集与处理,设计了基于事件、计时器和消息的3种实测数据采集方法。最终完成冷连轧过程控制的自适应功能开发,并将其应用到生产实践中。结果表明,该自适应功能模块有效保证了在线模型设定计算的快节奏,大大提高了原始模型的计算精度,有利于提高系统稳定性和运算效率,适合于工业生产实践。  相似文献   

7.
热轧相变过程变形抗力模型研究与开发   总被引:1,自引:0,他引:1  
李维刚  冯宁  王慎德  严保康 《钢铁》2017,52(6):61-66
 对精轧阶段存在相变的热轧钢种,因变形抗力随轧制温度的变化规律与常规的奥氏体轧制钢种显著不同,使得传统变形抗力模型的预报误差较大,严重影响这类钢种的轧制稳定性。为此,研发了一种热轧相变过程变形抗力模型,通过在原变形抗力模型基础上添加一个新的相变趋势项,该修正项为轧制温度的二次多项式函数,并根据钢种分类来精细优化适应不同钢种轧制的多项式待定参数。该模型目前已成功应用于涟钢CSP热连轧生产线变形抗力在线计算,实际生产应用表明,新模型上线后,变形抗力与轧制力的预报精度显著提高,轧制力模型预报误差12%以内的比例从83.3%提高到96.7%,满足了热连轧精轧相变带钢的稳定生产要求。  相似文献   

8.
针对马鞍山钢铁股份有限公司CSP生产线7机架连轧机轧制MGW1300电工钢产品时出现的轧制力设定值与实测轧制力误差较大的问题,对影响轧制力的主要因素--变形抗力进行了研究,提出通过保证良好的板凸度指标来间接修正变形抗力理论计算值的新方法.首先根据实测轧制力采用西姆斯公式计算变形抗力初始值,然后利用三维有限元模型对变形抗力初始值进行迭代修正,使板凸度误差达到5%以内.现场应用表明,在MGW1300产品轧制过程中,用该方法得到的变形抗力修正值,提高了在线轧制力预设定模型的预设定精度,减小了厚度波动,改善了板形质量,为电工钢稳定生产提供了保证.  相似文献   

9.
轧制力是影响冷轧带钢厚度精度的关键因素。为实现高精度的冷轧带钢厚度控制,通过优化变形抗力模型参数和摩擦系数模型参数提高冷轧轧制力模型计算精度,并使用指数平滑法的自学习算法保证轧制力精度的稳定性。在首钢股份公司迁安钢铁公司20辊森基米尔轧机生产线进行S12硅钢钢种轧制力优化试验,将优化的模型参数应用于L2并投入现场生产,结果表明该优化方法不仅提高了轧制力设定精度,而且减小了冷轧硅钢的厚度超差长度,提高了成材率。  相似文献   

10.
采用现场生产4J36稳定轧制时的实际数据,基于最小二乘原理,利用SPSS软件回归得到了4J36热轧板带变形抗力模型中的各个参变量。将回归的变形抗力模型带入西姆斯轧制力计算公式进行计算,通过比较与实际轧制力的误差,认定变形抗力回归结果适用于现场工艺设定与调整。  相似文献   

11.
针对冷连轧轧制过程的特点,变形程度是影响变形抗力的一个重要因素。建立了变形抗力的机理模型,并将理论模型与实际数据相结合。采用某钢厂生产的低碳钢08AlA稳定轧制时的现场实测数据,利用最小二乘逐次回归变形抗力模型中的各个参变量,并选用不同的方法来获得摩擦系数,选出与实际生产数据相吻合的最佳模型。将回归出的不同变形抗力模型,分别代入轧制力迭代公式进行计算,通过比较与实测轧制力的误差,选出最优的形抗力模型应用于实际生产中轧制力和前滑的预设定。  相似文献   

12.
针对不锈钢冷连轧生产工艺,提出动态变形抗力概念,利用四辊可逆冷轧机和Inston高速拉伸实验机进行轧制-拉伸实验,在MMS-200热模拟实验机上测定不锈钢的应力-应变曲线,建立不锈钢动态变形抗力模型。在Hill方程的基础上建立了轧制力显函数模型,并通过变形抗力和摩擦因数的逆向回归计算实现模型的在线自学习。提出了适合轧制力模型的可信度评估方法,引入Theil不等式系数法,依据TIC值定性分析了模型的适用性。最终确立了适合于冷连轧生产的精确的轧制力显函数模型,并将其应用到生产实践中。统计结果表明:冷连轧过程中轧制力的模型计算值与实测值的相对误差小于3.67%,该模型具有良好的计算精度和较好的泛化能力,适合于工业生产实践。  相似文献   

13.
In cold strip rolling control system, rolling force and forward slip are the prerequisites for the model setting calculation, and the deformation resistance and friction coefficient are the main parameters that affect their predictions. A new method based on objective function is first proposed in this paper to improve the calculation accuracy of rolling force and forward slip, and the deformation resistance and friction coefficient are taken as optimisation variables. Using the multi-population co-evolutionary algorithm to solve the objective function, the required rolling force and forward slip are obtained. The pre-set values of rolling force and roller line speed are compared with the actual measured ones in a 1450?mm five-stand tandem cold mill and other researcher’s method. Results show that the calculated values are in fair agreements with the on-line measured ones, and the thickness and flatness accuracy of the final product are improved.  相似文献   

14.
To improve the accuracy of rolling force prediction, some important force models were evaluated through applied computation for cold rolling of low carbon steel and aluminum alloy according to measured data on lab mill. The effects of model structure and three important variables ‐ flow stress, contact length and friction coefficient ‐ on the precision of computed force were quantitatively studied. Flow stress was measured with plane‐strain compression test, contact length was based on elastic flattening of work‐roll by Hitchcock, and friction‐coefficient was determined by rolling strain and numerical iteration. In steel rolling Bland & Ford integration model and Bryant & Osborn algebraic equation are better in accuracy than Ekelund and Parkins. In aluminum rolling all the models produce large deviations ΔFR = 10–20% if flow stress, contact length and friction coefficient are determined with the same method as steel rolling. The elastic deformation of aluminum strip is now taken into account for its low elastic modulus. An effective method to determine plastic and elastic contact has been developed in this investigation. The accuracy of force computation is obviously improved for aluminum rolling.  相似文献   

15.
何海涛  刘宏民  蒋岳峰 《钢铁》2007,42(1):55-58
针对双机架平整机的特性,以基态弯辊力下带材出口板形最好为准则,提出具有双机架平整机伸长率分配系数计算功能的轧制力模型;在此基础上,为了改善传统轧制力模型的预报精度,提出了先通过神经网络利用在线测得的实际数据预测变形抗力和摩擦因数,再与轧制力机理模型自学习过程相结合的轧制力预报新方法;并将其应用于宝钢1220双机架平整机的生产实践,结果表明此模型可以高精度地预报轧制压力.  相似文献   

16.
 In the process of steel tube production, continuous tube rolling is the foremost forming procedure and the critical step that decides the dimension precision and the surface quality. In the actual production of the 140 mm full floating mandrel mill in Steel Tube Branch in Baosteel, steel T91 was chosen to be the typical sample, self made rolling force transducer and mandrel velocity testing equipment were used, and a series of comprehensive tests on rolling parameters including the rolling force and mandrel velocity were carried out. After the experiment, the friction state between rolling tube and mandrel was analyzed. The friction coefficient was calculated and the values of 0033-0074 in each mill were obtained. The friction coefficient increases obviously along the rolling direction.  相似文献   

17.
针对双机架平整机生产极薄规格带钢时表面出现的羽痕缺陷生成机理进行了分析。通过研究发现,羽痕生成是由于极薄规格带钢在宽度方向上由轧制力和张力共同作用下出现不均匀变形,该变形产生的分界线在平整过程中出现了不均匀延伸;而在平整过程中由于弯辊和窜辊的预设定参数不合理、单位张力设定偏低、平整过程中弯辊力与轧制力不匹配等因素导致带钢局部延伸偏大,形成了明显的浪形,此浪形若经过平整机辊缝碾压则生成羽痕缺陷。通过将平整机设定张力提高30%、调整板形曲线为1~8 IU的大边浪、依照带钢厚度调整平整机板形预设定参数以及开发轧制力弯辊力跟随控制模型等措施,极薄规格带钢羽痕缺陷带出品由 206降至51 t/月,基板表面质量满足了国内外多家高端用户的要求。  相似文献   

18.
A mathematical model of friction coefficient was proposed for the roll force calculation of hot-rolled strips. The online numerical solving method of the roll force calculation formula based on the proposed friction model was developed and illustrated by the practical calculation case.Then,the friction coefficient during hot strip rolling was estimated from the measured roll force by force model inversion.And then,the expression of friction model was pro-posed by analyzing the calculation process of stress state coefficient,and the model parameters were determined by the shared parameter multi-model nonlinear optimization method.Finally,the industrial experiments demonstrated the feasibility and effectiveness of the related models.The accuracy of the new roll force model based on the built friction model was much higher than that of the traditional Sims model,and it could be applied in the online hot roll-ing process control.  相似文献   

19.
王振华  刘元铭  王涛  孙杰  张殿华 《钢铁》2022,57(9):95-102
 板带轧制数学模型是实现自动控制的基础,高精度的数学模型是提升产品质量和市场竞争力的重要保障。在热连轧粗轧过程控制中,轧制力和宽展是关键参数,其模型精度不仅会影响粗轧轧制规程的设定,而且会影响最终热连轧带钢产品凸度。以矩形板坯热连轧粗轧过程为研究对象,针对轧制变形区建立了三维运动许可加权速度场,在此基础上充分考虑自然宽展效应,基于刚塑性材料的第一变分原理,采用可变上限积分法对塑性变形、剪切功率和摩擦功率进行积分获得变形区总功率泛函。利用Matlab优化工具箱对总功率泛函进行最小化,得到了轧制力、宽度分布的理论解。最后利用理论模型计算数据回归得到了板坯宽展及速度场中的加权系数模型。将基于所提出模型的轧制力和宽展预测值与现场实测值及部分有关学者所建立模型的预测值进行了对比,结果验证了所建立模型的准确性。研究得到的宽展模型和速度场加权系数表达式可以方便、灵活、快速地应用到粗轧现场中,为更高质量热连轧带钢产品的生产奠定了坚实基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号