首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mixed surfactants were successfully applied to fabricate the highly porous Si3N4 ceramic foams by the direct foaming method. The oppositely charged surfactants mixed in slurries could combined into catanionic surfactant by the electrostatic attraction and facilitate the formation of ultra-stable foams. The microstructure of the Si3N4 ceramic foams, including pore structure, mean pore size, pore size distribution and porosity were tailored by varying the mixing ratio of surfactant, mixed surfactants concentration and solid content of the initial slurries. Si3N4 ceramic foams with porosity of 92%-97%, mean pore size of 140-240 µm and compressive strength of 0.85-5.38 MPa were obtained by adjusting mixed surfactants between 0.1 and 0.4 wt% and solid content between 22 and 30 vol%. The compressive strength of Si3N4 ceramic foams in current work was much higher than most reported results.  相似文献   

2.
A new consolidation process had been developed for preparing Si3N4 ceramic foams by using protein foaming method, which was inspired from the preparation of steamed bread. The main advantage of this consolidation process was no crack development during foamed slurry consolidation process. By using this new consolidation, Si3N4 ceramic foams with open porosities of 79.6–87.3% and compressive strength of 2.5–22 MPa were prepared. Protein addition and solid content on mechanical properties and pore structures of the as-prepared ceramic foams were investigated. Results indicated that the open porosity decreases with protein addition and solid content while compressive strength increased with solid content. With the increase of solid content, pores of the ceramic foams became regular in shape and uniform in size while both size and number of windows on the walls decreased.  相似文献   

3.
The effect of carboxymethyl cellulose (CMC) addition on the preparation of Si3N4 ceramic foam by the direct foaming method was investigated. The addition of CMC in the foam slurry can reduce the surface tension, increase the viscoelasticity of foams, and improve their stability and fluidity. The foam ceramics show low shrinkage during drying owing to the CMC and the gelation of acrylamide monomers. The surface structure of dried foam is uniform, and there are no macropores and cracks on the surface. The sintered Si3N4 foam ceramics have very uniform pore distribution with average pore size of about 16 μm; the flexure strength is as high as 3.8–77.2 MPa, and the porosity is about 60.6–82.1%.  相似文献   

4.
To meet demand for lightweight and high-strength ceramic foams, in-situ self-reinforced Si3N4 ceramic foams, with compressive strength of 13.2–45.9 MPa, were fabricated by protein foaming method combined with sintered reaction-bonded method. For comparison, ordinary protein foamed ceramics with irregular block microstructure were fabricated via reaction-bonded method, which had compressive strength of 3.6–20.5 MPa. Physical properties of these two types of samples were systematically compared. When open porosity was about 80%, both types of Si3N4 ceramic foams had excellent thermal insulation properties (<0.15 W m?1 K?1), while compressive strength of in-situ self-reinforced samples increased by more than 158% compared with ordinary samples. Under high-temperature oxidation conditions, microstructures of both types of samples were deformed with increase in oxidation temperature. Moreover, after oxidation temperature was increased to 1400 °C, oxidation weight gain decreased from 18.07% for ordinary samples to only 2.18% for self-reinforced samples. Thus, high-temperature oxidation resistance of Si3N4 ceramic foams was greatly improved.  相似文献   

5.
Porous Si3N4 ceramics with open, closed pores and nest-like structures were prepared by direct foaming method, and the stability of bubbles and the microstructures of sintered Si3N4 foam ceramics were investigated. The bubbles produced by short-chain amphiphiles have higher stability as compared with that produced by long-chain surfactants. Si3N4 ceramic foams using short-chain amphiphiles are particle-stabilized one, porous Si3N4 ceramics with open and closed pores can be easily prepared with this method, and the nest-like microstructure in Si3N4 foam ceramics is achieved at high gas-pressure sintering conditions. The decrease of flexural strength due to the increase of porosity can be weakened by decreasing pore size.  相似文献   

6.
Ultralight Si3N4 ceramic foams have been successfully prepared through particle‐stabilized foams method, which is based on the adsorption of in situ hydrophobized Si3N4 particles to the liquid/air interface of the foams. Here, we firstly used a long‐chain surfactant cetyltrimethylammonium chloride to render the Si3N4 particles partially hydrophobic. By tailoring the surfactant concentration and pH values of the suspensions, the wet foams were stabilized to avoid coarsening and coalescence. SEM results show that the Si3N4 ceramic foams possess single strut walls with elongated β‐Si3N4 grains interlocking with each other, and their pores are uniform with an average pore size of 95 μm. The obtained ceramic foams maintain compressive strength of 1.34 ± 0.13 MPa with porosity of 92.0%, when the suspension contains 3 mmol/L surfactant at the pH of 11.0.  相似文献   

7.
Si3N4-SiCN ceramic foams with hierarchical pore architecture were formed by protein-based gelcasting and precursor infiltration and pyrolysis. The primary pore structure (>100 μm) was generated by protein gelation and precursor ceramization, while the secondary pore structure (10–50 μm) originated from the cell windows after pyrolysis. The network of Si3N4 nanowires and the voids among ceramic particles formed the tertiary pore structure (<2 μm). The obtained Si3N4-SiCN ceramics had a density of 0.45–0.66 g/cm3 and an open porosity of 72.7–82.8 vol.%. The porous bulks possessed a compressive strength of up to 16.9 ± 1.1 MPa (72.7 vol.% open porosity) at room temperature and 8.6 ± 0.2 MPa at 800 °C. A good gas permeability of the ceramics was indicated with a tested value of 3.27 cm3cm/(cm2·s·kPa). The excellent mechanical property, permeability together with the hierarchical pore structure enabled the Si3N4-SiCN composite bulks promising for industrial filtration applications.  相似文献   

8.
《Ceramics International》2017,43(5):4096-4101
Silicon nitride (Si3N4) foams were prepared by using protein foaming method with varying rotating speed during the foaming process. The pore sizes of these as-fabricated Si3N4 foams were measured by means of the Image Pro Plus software and the as-measured pore size date was analyzed statistically by using the SPSS Statistics software. It was indicated that the pore size data of the as-prepared Si3N4 foams abided by the logarithmic normal distribution. With the increase of rotating speed, the pore structure of Si3N4 foam became more uniform. This was because of the enhancing shear stress at higher rotating speed, which increased frequency of collision between bubbles in foamed slurry and hence improved the uniformity of bubble size distribution. The porosity, density and flexural strength of these as-prepared Si3N4 foams fluctuated in a small range, indicating that the rotating speed had limited influence on these properties.  相似文献   

9.
The brittleness of Si3N4 ceramics has always limited its wide application. In this paper, Si3N4 ceramics were prepared based on foam. Combining the unique honeycomb structure of the ceramic foams and the self-toughening mechanism of Si3N4, the strengthening and toughening of Si3N4 ceramics can be further achieved by adjusting the microstructure of Si3N4 ceramic foams. The powder particles are self-assembled by particle-stabilized foaming to form a foam body with a honeycomb structure. It was pretreated at different temperatures (1450–1750°C). The microstructure evolution of foamed ceramics at different pretreatment temperatures and the conversion rate of α-Si3N4 to β-Si3N4 at different pretreatment temperatures were explored. Then the foamed ceramics with different microstructures are hot-press sintered to prepare Si3N4 dense ceramics. The effects of different microstructures of foamed ceramics on the strength and toughness of Si3N4 ceramics were analyzed. The experimental results show that the relative density of Si3N4 ceramics prepared at a particle pretreatment temperature of 1500°C is 97.8%, and its flexural strength and fracture toughness are relatively the highest, which are 1089 ± 60 MPa and 12.9 ± 1.3 MPa m1/2, respectively. Compared with the traditional powder hot-pressing sintering, the improvement is 21% and 33%, respectively. It is shown that this method of preparing Si3N4 ceramics based on foam has the potential to strengthen and toughen Si3N4 ceramics.  相似文献   

10.
《Ceramics International》2022,48(9):12569-12577
Silicon nitride (Si3N4) slurries with high solid loading, low viscosity and good stability is difficulty prepared, due to low intrinsic surface charge and a large refractive index (RI) difference between Si3N4 powder and resin. In this paper, the curing behavior of Si3N4 slurry with different functional group and RI of resin monomer were systematically researched, and then the kind and optimum content of dispersant were investigated. Subsequently, a high solid loading Si3N4 slurry (44 vol%) with good curing behavior, low viscosity and favorable stability was successfully prepared. Lastly, the dense Si3N4 ceramic parts were fabricated by the suitable Si3N4 slurry (44 vol%) via stereolithography. After debinding and sintering process, the relative density and flexural strength of Si3N4 ceramic were 98.28% and 800 ± 27.28 Mpa, respectively.  相似文献   

11.
In situ synthesis of Si2N2O/Si3N4 composite ceramics was conducted via thermolysis of novel polysilyloxycarbodiimide ([SiOSi(NCN)3]n) precursors between 1000 and 1500 °C in nitrogen atmosphere. The relative structures of Si2N2O/Si3N4 composite ceramics were explained by the structural evolution observed by electron energy-loss spectroscopy but also by Fourier transform infrared and 29Si-NMR spectrometry. An amorphous single-phase Si2N2O ceramic with porous structure with pore size of 10–20 μm in diameter was obtained via a pyrolyzed process at 1000 °C. After heat-treatment at 1400 °C, a composite ceramic was obtained composed of 53.2 wt.% Si2N2O and 46.8 wt.% Si3N4 phases. The amount of Si2N2O phase in the composite ceramic decreased further after heat-treatment at 1500 °C and a crystalline product containing 12.8 wt.% Si2N2O and 87.2 wt.% Si3N4 phases was obtained. In addition, it is interesting that residual carbon in the ceramic composite nearly disappeared and no SiC phase was observed in the final Si2N2O/Si3N4 composite.  相似文献   

12.
Si3N4 ceramic with ultrafine fibrous grains are expected to exhibit remarkable mechanical properties. In this work, highly porous Si3N4 ceramic monoliths composed of ultrafine fibrous grains were developed via a novel vapor-solid carbothermal reduction nitridation (V-S CRN) reaction between SiO vapor and green bodies comprised of carbon nanotubes (CNTs), α-Si3N4 diluents and Y2O3 in a N2 atmosphere. The unique fibrous grains-interconnected structure was developed through in-situ formation of Si3N4 and following liquid phase sintering. The porous Si3N4 monoliths with porosity of 61–78% was developed by controlling the contents of α-Si3N4 diluents and densities of the CNT green bodies. With increasing of the α-Si3N4 contents, Si3N4 fibrous grains with an aspect ratio of approximate or higher than 20 could be achieved, and the grains were gradually refined. For the samples with 40 wt% α-Si3N4, the minimum mean grain diameter and pore size of 164 nm and 0.79 μm were achieved, respectively, and the resultant porous Si3N4 monolith exhibited a flexural strength of as high as 73–102 MPa with the porosity of 61–73%, which is much higher than that of the reported in literature. The improvement of mechanical strength could be attributed to the densely interconnected bird's nests structure formed by the ultrafine fibrous grains. The effects of the α-Si3N4 diluents on the resulting porous Si3N4 monolith via this method were analyzed.  相似文献   

13.
Digital light processing 3D printing can be applied to fabricate complex silicon nitride (Si3N4) components. However, because of the surface hydroxyl groups and large refractive index, it is still a foremost challenge to realize a stable photosensitive Si3N4 slurry with combined benefits of low viscosity and large curing depth. In this study, we propose a new formulation strategy to prepare Si3N4 slurry. Starting from the optimization of monomer ratio, we have systematically optimized powder particle size, dispersant and photoinitiator on the rheological properties and curing properties of Si3N4 slurry. Specifically, we have fabricated a stable photosensitive Si3N4 slurry (48 vol%) with a viscosity of 2.09 Pa s (30 s?1), a critical curing energy of 126.09 mJ/cm2 and a maximum curing depth of 80 µm. Finally, based on this optimized slurry, we have successfully obtained complex Si3N4 green body with no defect, which demonstrates great potential to fabricate arbitrary complex ceramic components for various applications.  相似文献   

14.
Cutting performances of silicon nitride (Si3N4) ceramic cutting tools with and without boride additive (2.5 vol% ZrB2 or TiB2) prepared by hot-pressing at 1500°C were investigated. Due to the α- to β-Si3N4 phase transformation and low densification temperature, boride-containing Si3N4 ceramics with high hardness and high toughness were obtained. The turning tests showed that the effective cutting lengths of the Si3N4–2.5 vol% TiB2 ceramic (∼2480 m) and Si3N4–2.5 vol% ZrB2 ceramic (∼2200 m) were higher than the monolithic Si3N4 ceramic (∼1780 m). As the toughness was improved while maintaining relative high hardness, the cutting performances of the boride-containing Si3N4-based inserts were improved by adding 2.5 vol% ZrB2 or TiB2. The improved cutting performance indicated that the boride-containing Si3N4 ceramics are expected to be used in the field of ceramic cutting tools.  相似文献   

15.
A new method of forming silicon carbide–silicon nitride composite foams is presented. These are prepared by immersing a polyurethane foam in a polysilane precursor solution mixed with Si3N4 powder to form a pre-foam followed by heating it in nitrogen at >900°C. X-ray diffraction patterns indicate that a SiC–Si3N4 composite was formed after sintering the ceramic foam at >1500°C. Micrographs show that most of these foams have well-defined open-cell structures and macro-defect free struts. The shrinkage is reduced considerably due to the addition of Si3N4 particles.  相似文献   

16.
Porous Si3N4 ceramics with monomodal and bimodal pore structure were prepared by cold isostatic pressing and freeze-casting, respectively. Both the pore structure and permeability behavior of the porous Si3N4 ceramics were tailored by altering the pressure of cold isostatic pressing and the composition and content of solvent during freeze-casting. The specimens obtained by cold isostatic pressing exhibited smaller Darcian and non-Darcian permeability than those of freeze-casted samples due to their lower open porosity, smaller pore size and higher tortuosity. On the other hand, compared with the ice-templated specimens having the same solvent volume in the ceramic slurries as them during freeze-casting, the emulsion-ice templated samples showed smaller open porosity, macropore size and Dacian permeability, but the similar non-Darcian permeability because of their larger micropores and better pore interconnectivity.  相似文献   

17.
《Ceramics International》2021,47(19):27058-27070
The porous SiC–Si3N4 composite ceramics with good EMW absorption properties were prepared by combination of gelcasting and carbothermal reduction. The pre-oxidation of Si3N4 powders significantly improved the rheological properties of slurries (0.06 Pa s at 103.92 s−1) and also suppressed the generation of NH3 and N2 from Si3N4 hydrolysis and reaction between Si3N4 and initiator APS, thereby reducing the pore defects in green bodies and enhancing mechanical properties with a maximum value of 42.88 MPa. With the extension of oxidation time from 0 h to 10 h, the porosity and pore size of porous SiC–Si3N4 composite ceramics increased from approximately 41.86% and 1.0–1.5 μm to 46.33% and ~200 μm due to the production of CO, N2 and gaseous SiO, while the sintering shrinkage decreased from 16.24% to 10.50%. With oxidation time of 2 h, the Si2N2O fibers formed in situ by the reaction of Si3N4 and amorphous SiO2 effectively enhanced the mechanical properties, achieving the highest flexural strength of 129.37 MPa and fracture toughness of 4.25 MPa m1/2. Compared with monolithic Si3N4 ceramics, the electrical conductivity, relative permittivity and dielectric loss were significantly improved by the in-situ introduced PyC from the pyrolysis of three-dimensional network DMAA-MBAM gel in green bodies and the SiC from the carbothermal reduction reaction between PyC and SiO2 and Si3N4. The porous SiC–Si3N4 composite ceramics prepared by the unoxidized Si3N4 powders demonstrated the optimal EMW absorption properties with reflection loss of −22.35 dB at 8.37 GHz and 2 mm thickness, corresponding to the effective bandwidth of 8.20–9.29 GHz, displaying great application potential in EMW absorption fields.  相似文献   

18.
Porous Si3N4 ceramics with tailored pore structures were fabricated via self-propagating high temperature synthesis (SHS) using Polymethylmethacrylate (PMMA) as pore forming agent. The pore structures, mechanical properties and permeation performance of porous Si3N4 ceramics were investigated by altering the particle sizes and amount of PMMA. With the increasing content of PMMA, the flexural strength of samples decreased from 102.5 MPa to 9.4 MPa. The tortuosity which showed irregular variation affected gas permeability directly. The samples with 20 wt% content of PMMA exhibited the maximum Darcian and non-Darcian constants with the smallest tortuosity. Moreover, the comparison of permeability coefficients with other ceramics via different pore forming methods in literature was presented. The specimens exhibited great permeability due to the large pore sizes created by the elongated and coarsened β-Si3N4 grains during the SHS process, providing a low-cost and environmentally friendly method for preparing high permeability porous Si3N4 supports.  相似文献   

19.
《Ceramics International》2023,49(18):29699-29708
Si3N4-SiO2 ceramics are considered as the preferred high-performance wave-transmitting material in the aerospace field. However, traditional fabrication methods for Si3N4-SiO2 ceramics have the disadvantages of high cost and complicated fabrication process. In this paper, Si3N4-SiO2 ceramics with excellent mechanical and dielectric properties were fabricated by digital light processing-based 3D printing combined with oxidation sintering. Firstly, the curing thickness and viscosity of slurries with different solid loadings for vat photopolymerization-based 3D printing were studied. Then, the effects of the sintering temperature on the linear shrinkage, phase composition, microstructure, flexural strength, and dielectric properties of Si3N4-SiO2 ceramics, and the influences of solid loading on them were explored. The curing thickness and viscosity of the slurry with a solid loading of 55 vol% were 30 μm and ∼1.5 Pa‧s, respectively. The open porosity and the flexural strength of Si3N4-SiO2 ceramic with a solid loading of 55 vol% were 4.3 ± 0.61% and 76 ± 5.6 MPa, respectively. In the electromagnetic wave band of 8–18 GHz, the dielectric constant of Si3N4-SiO2 ceramics was within the range of less than 4, and the dielectric loss remained below 0.09. The method of digital light processing-based 3D printing combined with oxidation sintering can be further extended in the preparation of Si3N4-based structure-function integrated ceramics.  相似文献   

20.
Porous Si3N4–SiC composite ceramic was fabricated by infiltrating SiC coating with nano-scale crystals into porous β-Si3N4 ceramic via chemical vapor infiltration (CVI). Silica (SiO2) film was formed on the surface of rod-like Si3N4–SiC grains during oxidation at 1100 °C in air. The as-received Si3N4–SiC/SiO2 composite ceramic attains a multi-shell microstructure, and exhibits reduced impedance mismatch, leading to excellent electromagnetic (EM) absorbing properties. The Si3N4–SiC/SiO2 fabricated by oxidation of Si3N4–SiC for 10 h in air can achieve a reflection loss of ?30 dB (>99.9% absorption) at 8.7 GHz when the sample thickness is 3.8 mm. When the sample thickness is 3.5 mm, reflection loss of Si3N4–SiC/SiO2 is lower than ?10 dB (>90% absorption) in the frequency range 8.3–12.4 GHz, the effective absorption bandwidth is 4.1 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号