首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
低劣生物质厌氧产甲烷过程的模拟研究进展   总被引:1,自引:1,他引:0       下载免费PDF全文
低劣生物质厌氧消化可以减少温室气体的排放并且生产生物甲烷作为能源。介绍了关于厌氧消化过程、底物的相关理论,还对目前主要用于厌氧产甲烷过程研究的数学模型以及碳氮磷转化的模拟研究进行了综述。其中,一级动力学模型是最为简单的数学模型,其可以通过简单的计算得到整个过程中甲烷产量随着时间的变化曲线,但是只限于较准确模拟甲烷产率的ADM1模型相对发展最为全面、应用最为广泛,且能够针对具体要研究的对象进行模型的修改。同时总结了较为常见的底物厌氧产甲烷研究模型、研究对象及结果、已有碳/氮/磷转化模拟研究及相关研究,并对开展针对厌氧产甲烷过程中碳氮磷转化的模拟研究进行了展望。  相似文献   

2.
方慧莹  王端立  陈皓  王亚宜 《化工学报》2017,68(5):2042-2048
污泥厌氧消化是污水处理厂实现“碳中和”的关键环节。然而传统厌氧消化技术普遍存在水解不充分、产甲烷效率低的问题,在工程中表现为污泥的甲烷潜势(B0)低、产甲烷速率(k)低等,从而使得获得的甲烷气通常不能达到量和质的要求。纳米级零价铁(NZVI)基于能够在厌氧条件下析氢(H2)腐蚀为产甲烷菌提供电子供体及更有利的厌氧环境,而被认为在厌氧消化领域具有潜在的应用前景。就此,通过在厌氧消化体系中投加不同剂量的NZVI(0、100、300、600和1000 mg·L-1),以甲烷潜势(B0)和产甲烷速率(k)为主要评价指标,并基于一级反应动力学模型探讨了NZVI对厌氧消化过程的主要作用机理。研究结果表明,NZVI能够强化厌氧消化过程产甲烷,主要作用机制在于促进微生物细胞破壁,从而提高污泥的水解酸化程度,得到更高的甲烷潜势(B0)。  相似文献   

3.
厌氧产甲烷是有机废弃物资源化的有效途径之一,已经被广泛应用于处理工业废水、城市生活垃圾、农业废弃物、禽畜粪便等。但目前存在产甲烷效率低、转化速率较慢等缺点。本研究尝试利用自然界中广泛存在的针铁矿为添加剂强化废水产甲烷过程。以乙酸钠和葡萄糖和为碳源模拟有机废水,研究了针铁矿对有机废水厌氧产甲烷的作用,考察了不同水力负荷条件下对连续流厌氧产甲烷反应器消化体系甲烷产量及产甲烷速率的作用。  相似文献   

4.
甲烷八叠球菌研究进展   总被引:1,自引:0,他引:1  
甲烷八叠球菌(Methanosarcineae)是能够利用乙酸、CO2、甲醇、甲胺、甲基硫化物等多种有机或无机化合物为底物产生甲烷的厌氧古细菌,它的代谢路径多样,遗传结构简单,广泛应用于理论和应用研究,其中M.acetivorans、Mmazei和M.barkeri菌种在完成全基因组测序后成为研究古细菌的模式菌种。甲烷八叠球菌是厌氧消化产甲烷的重要菌株,应用潜力巨大。简单介绍了甲烷八叠球菌的形态特征、代谢特征和基因组特征,并对其在厌氧消化中的应用研究进展进行了综述。  相似文献   

5.
采用电化学厌氧消化(EAD)连续发酵工艺,以乙酸钠为底物,在温度为35℃、pH为中性的条件下,考察底物质量浓度和水力滞留时间对电化学厌氧消化的影响,分析了不同条件下的产气量、气体含量、底物利用率及产甲烷转化率。结果表明,当底物质量浓度从15 g/L增加到25 g/L时,甲烷体积分数先增加后减少,甲烷产率一直降低,导致电化学厌氧消化的降解效果降低。延长水力滞留时间能提高电化学厌氧消化的效果,促进底物在反应体系内的充分氧化分解,提高甲烷产率,但反应器运行效率会减小。  相似文献   

6.
污泥厌氧消化是污水处理厂实现"碳中和"的关键环节。然而传统厌氧消化技术普遍存在水解不充分、产甲烷效率低的问题,在工程中表现为污泥的甲烷潜势(B0)低、产甲烷速率(k)低等,从而使得获得的甲烷气通常不能达到量和质的要求。纳米级零价铁(NZVI)基于能够在厌氧条件下析氢(H2)腐蚀为产甲烷菌提供电子供体及更有利的厌氧环境,而被认为在厌氧消化领域具有潜在的应用前景。就此,通过在厌氧消化体系中投加不同剂量的NZVI(0、100、300、600和1000 mg·L~(-1)),以甲烷潜势(B0)和产甲烷速率(k)为主要评价指标,并基于一级反应动力学模型探讨了NZVI对厌氧消化过程的主要作用机理。研究结果表明,NZVI能够强化厌氧消化过程产甲烷,主要作用机制在于促进微生物细胞破壁,从而提高污泥的水解酸化程度,得到更高的甲烷潜势(B0)。  相似文献   

7.
微生物电解池产甲烷技术研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
微生物电解池(microbial electrolysis cell,MEC)产甲烷技术是以微生物为催化剂,利用外界输入的电能将CO2或有机污染物转化为甲烷的新技术。MEC在实现CO2处置与能量转化的同时,能够处理污水、污泥、沼渣等多种污染物并生产甲烷,具有能量转化率高、生产成本低、环境友好等特点,可望成为解决能源紧缺和环境破坏问题的重要途径之一。近年来,MEC在产甲烷生物阴极结构及电子传递途径、产甲烷微生物群落等方面得到了广泛关注,同时,MEC耦合厌氧消化或其他废水处理系统形成的产甲烷新技术也逐渐研发并成为研究热点。本文综述了产甲烷生物阴极、产甲烷微生物群落等方面的研究现状,介绍了MEC耦合厌氧消化或其他系统产甲烷新技术,总结并分析了MEC产甲烷技术的研究方向和实用化过程仍需解决的技术难题。  相似文献   

8.
曲艺源  张景新  何义亮 《化工进展》2022,41(4):2060-2067
目前餐厨垃圾中的盐度对其厌氧消化产甲烷有不利影响。为了解决这一问题,本研究通过使用铁-碳微生物电解池来强化高温厌氧消化。本文使用零价铁作为微生物电解池的阳极,提高微生物的耐盐能力,增强了阳极的氧化作用,从而促进产甲烷过程。结果表明,铁-碳微生物电解池的累积产甲烷量最高达到了1110.67mL,比对照组提高了68.18%。随着Na+浓度的提高,水解酸化过程受到了抑制,而铁-碳微生物电解池促进了微生物降解有机物的过程,并且促进了丙酸和丁酸转化为乙酸的过程。微生物群落结构分析表明,铁-碳微生物电解池促进了Methanomassiliicoccus的生长,在阳极上占比52%。代谢通路分析表明,铁-碳微生物电解池提高了微生物的耐盐能力,促进了水解酸化过程,并且提高了产甲烷过程中乙酸脱羧和二氧化碳还原过程中相关酶的基因丰度,强化高温厌氧消化。  相似文献   

9.
微生物电解池(microbial electrolysis cell,MEC)产甲烷技术是以微生物为催化剂,利用外界输入的电能将CO_2或有机污染物转化为甲烷的新技术。MEC在实现CO_2处置与能量转化的同时,能够处理污水、污泥、沼渣等多种污染物并生产甲烷,具有能量转化率高、生产成本低、环境友好等特点,可望成为解决能源紧缺和环境破坏问题的重要途径之一。近年来,MEC在产甲烷生物阴极结构及电子传递途径、产甲烷微生物群落等方面得到了广泛关注,同时,MEC耦合厌氧消化或其他废水处理系统形成的产甲烷新技术也逐渐研发并成为研究热点。本文综述了产甲烷生物阴极、产甲烷微生物群落等方面的研究现状,介绍了MEC耦合厌氧消化或其他系统产甲烷新技术,总结并分析了MEC产甲烷技术的研究方向和实用化过程仍需解决的技术难题。  相似文献   

10.
电解电压和电流是连续电化学厌氧消化的重要电化学参数,通过影响厌氧消化电活性微生物活性进而影响电化学厌氧消化。研究改变电压和电流,在35℃下运行连续电化学厌氧消化(EAD),分析了不同条件下的产气量、组分含量、底物消耗率及甲烷产率。结果表明,电压的提高有利于EAD体系内电活性微生物的生长进而促进产生电流,4.0 V时EAD产甲烷最高,电活性微生物活性最强与甲烷产率最佳;当电压继续升高至5.0 V与6.0 V,电压过高抑制反应体系类电活性微生物活性,甲烷产率下降。增加电流运行的EAD均有较高的底物消耗率和较高的甲烷产率。  相似文献   

11.
陈露蕊  曹利锋 《化工进展》2021,40(Z1):326-333
化石燃料燃烧过程中大量排放的CO2引起了人们对CO2生物甲烷化的关注。厌氧有机物生物降解过程中,与CO2生物甲烷化相关的主要是厌氧耗氢产甲烷菌。近年来,研究者们关注温度对厌氧耗氢产甲烷过程的影响,对推动厌氧耗氢产甲烷工艺的发展有着重要的意义。本文从厌氧耗氢产甲烷技术原理出发,介绍了厌氧生物降解过程中耗氢产甲烷菌的重要作用,归纳了32种仅利用H2和CO2产CH4的专性耗氢产甲烷菌,展示了氢气可以来源于化石燃料、生物质、水的分解和工业气体,综述了不同温度范围下厌氧耗氢产甲烷的效能,总结了不同温度变化方式对厌氧耗氢产甲烷的影响,并从氢气来源和温度变化等方面提出了展望。  相似文献   

12.
为提高醋糟产氢废水的甲烷产量,研究了超声波对厌氧消化产甲烷的影响,以超声功率和超声时间为影响因素进行了响应面分析,实验结果表明,超声功率对厌氧消化产甲烷有显著的影响。响应面结果表明最佳的超声条件:超声功率为24 W,超声时间为29 s。基于最优超声条件下的醋糟产氢废水厌氧消化实验表明,超声能够显著提高醋糟产氢废水的甲烷产率,最高的甲烷产率为228 m L/g-VS醋糟,比未超声组提高了21%。甲烷菌细胞的传质效率的提高和较高的生物活性是甲烷产量提高的原因。  相似文献   

13.
原料比例和pH值对厨余垃圾和废纸联合厌氧消化的影响   总被引:4,自引:0,他引:4  
以厨余垃圾和废纸为原料,考察了不同原料比例和酸化阶段pH对消化稳定性及产甲烷性能的影响. 结果表明,原料比例为厨余垃圾/废纸100:0的厌氧消化由于挥发性脂肪酸抑制不能形成稳定的产甲烷过程. 原料比例83:17时,酸化阶段pH为6.5, 7.2和7.9的3组厌氧消化甲烷产率(以挥发性固体计)分别为313, 346和360 mL/g,COD去除率为86.3%, 93.2%和95.2%,甲烷含量稳定在70%~80%. 原料比例62:38、pH为6.5, 7.2和7.9的3组厌氧消化甲烷产率分别为97, 247和279 mL/g,COD去除率为32.6%, 80.5%和86.8%,甲烷含量稳定在60%~80%.  相似文献   

14.
以Fe3O4纳米粒子和Bi2O2CO3为原料,采用溶剂热法制备Bi2O2CO3/Fe3O4磁性复合物,并通过对印染废水中染料的去除、剩余污泥厌氧消化过程中产甲烷潜力的影响两方面探讨其在环境污染治理中的应用。借助X射线衍射(XRD)、扫描电镜(SEM)、傅里叶红外光谱(FTIR)和比表面积及孔径分析对Bi2O2CO3/Fe3O4复合物进行表征分析,SEM分析结果表明复合物表面较粗糙,BET结果显示复合物的比表面积为9.2294m2/g,Fe3O4的引入大幅度增加了Bi2O2CO3的比表面积,使其具有明显的介孔结构。一方面,以甲基橙(MO)为目标污染物,研究了不同实验条件下该材料对染料的去除效果,结果表明,最大吸附量可达14.373mg/g,且该吸附反应过程符合拟二级动力学和Langmuir吸附等温模型,趋于单分子层吸附;另一方面,评估了复合物对污泥厌氧消化产甲烷潜力的影响,结果表明,复合物的引入对污泥厌氧消化产甲烷过程有一定的促进作用,累积产甲烷量相比于对照组提高了10%。分别用一级动力学模型和修正Gompertz模型模拟厌氧消化过程,模拟结果显示一级动力学模型可以更好地描述引入Bi2O2CO3/Fe3O4磁性复合物的污泥厌氧消化过程。  相似文献   

15.
杨源 《广州化工》2020,48(3):69-71
水解是厌氧消化的限速步骤,本文采用Ca(OH)_2对污泥进行预处理以增大污泥中溶解性有机物浓度,促进厌氧消化的水解阶段并提高甲烷产量。实验结果表明在预处理的过程中添加Ca(OH)_2能够提升溶解性多糖、蛋白、sCOD的浓度。将污泥进行厌氧发酵实验后发现经过Ca(OH)_2预处理后的污泥能够提升20. 3%~49. 2%的产甲烷率。通过修正的Gompertz模型可以较好地模拟厌氧消化的动力学过程,相关度系数均大于0. 98。实验结果说明Ca(OH)_2预处理能够有效促进污泥中能源的回收。  相似文献   

16.
厌氧消化产甲烷是实现微藻生物质能生产的重要方式,但存在消化不彻底、甲烷转化率偏低等问题。本文从理论产甲烷潜力入手,揭示了各类微藻生物质均具有良好的产甲烷潜力,普遍高于活性污泥等典型生物质,与富含能量的厨余垃圾相当。然而大部分微藻生物质的甲烷转化率都低于50%,使其实际甲烷产率处于甚至低于活性污泥的水平。微藻破壁困难和C/N比低是其甲烷转化率低的主要原因。文章从预处理和共消化两方面总结归纳了强化微藻厌氧消化的各种方法。其中低温热处理是目前最具经济技术可行性的预处理方法。与高含碳基质共消化是解决C/N比低的有效手段,但其作用需在高有机负荷下才能显现。剩余污泥不宜单独作为微藻的共消化基质。最后建议进一步探究预处理与共消化的协同作用以及重点考察连续运行工况下微藻厌氧消化的实际效果。  相似文献   

17.
厌氧消化是处理含抗生素有机废物的常用技术手段,但高浓度抗生素会抑制厌氧微生物菌群活性,从而干扰厌氧消化效能和抗生素自身降解效率。近年来,导电材料强化含抗生素有机废物厌氧消化取得了良好效果,有机废物资源回收效率得到进一步提升。本文从抗生素使用现状和对厌氧消化代谢过程的影响出发,讨论了抗生素在厌氧消化中的迁移转化机制,重点阐述了铁基和碳基导电材料在抗生素胁迫厌氧消化系统中的应用及生化作用机理。研究表明:通过富集功能性微生物、强化微生物种间电子传递以及削减厌氧消化系统中的抗生素和抗生素抗性基因,导电材料可以提升厌氧消化产甲烷效能、降低抗生素污染的环境风险。最后,从构建生物信息网络、开发优化新型材料和处理多元污染物方面对导电材料强化技术的发展方向进行了展望。  相似文献   

18.
通过间歇实验建立厌氧产甲烷体系,研究不同Fe~(3+)含量对厌氧颗粒污泥消化过程的影响。结果表明,当Fe~(3+)的质量浓度为0~40 mg/L时,甲烷产量随着Fe~(3+)含量增加而增加,加快了微生物对挥发性脂肪酸(VFAs)的利用;高含量Fe~(3+)(质量浓度50~100 mg/L)抑制厌氧产甲烷过程。当Fe~(3+)的质量浓度在40 mg/L时,获得最大甲烷气体体积1.578 L,较对照提高了36.32%。利用Gompertz模型拟合可得,最大产甲烷产率和甲烷潜在产量分别达到11.06m L/h和1.640 L,延滞时间缩短了3.98 h。脱氢酶和F420的质量浓度分别为27.23μg/L和54.85μg/L。且Fe~(3+)的质量浓度在40 mg/L时,污泥对Fe~(3+)水溶态和离子交换态利用率分别提高了90.36%和54.55%,总利用率达25.32%,生物有效性得到提升。  相似文献   

19.
建立直接种间电子传递(DIET),可以有效克服间接种间电子传递(MIET)受制于电子载体和外界环境等缺点,增强厌氧生物处理系统运行效率。添加导电材料,可以促进发酵细菌和产甲烷菌之间形成有效DIET,提高厌氧系统的污染物降解和产甲烷效能。对铁锰材料、碳材料及复合材料等导电材料对厌氧生物处理过程的影响进行了综述,重点介绍了不同导电材料对甲烷产量、甲烷生成速率及COD降解的强化作用。导电材料强化厌氧消化的研究已取得一定成果,还需进一步探索不同导电材料的性能,比选出价格低廉、绿色环保的导电材料,拓展厌氧生物处理的应用范围。  相似文献   

20.
总结了厌氧系统中微塑料的来源、存在种类、形态以及含量;探讨了不同厌氧消化体系中,微塑料对水解、产酸和产甲烷3阶段运行特征的影响异同;在此基础上,从细胞结构、酶活性和微生物群落演替3方面对微塑料影响厌氧消化机制进行综述分析。有研究表明,由于微塑料会在反应过程中不断释放毒性物质,在厌氧代谢的不同阶段常起抑制作用,但一些研究也发现微塑料会通过增溶作用促进厌氧代谢。现有研究主要以污泥厌氧消化为对象,而对其他底物或者共消化厌氧系统中微塑料的研究较少,而微塑料对厌氧代谢过程中微生物互营关系特别是种间电子传递的影响,还有待进一步深入研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号