首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
以自制近单分散、平均粒径约为250 nm的SiO2亚微球为核心,采用液相沉积法得到β-FeOOH/SiO2微球,再通过溶胶-凝胶法以β-FeOOH/SiO2微球为内核,十六烷基三甲基溴化铵(CTAB)为模板剂,正硅酸乙酯(TEOS)为硅源,经水解缩聚反应,焙烧后得到近单分散介孔SiO2/Fe3O4/SiO2微球,以复合微球为载体,对漆酶进行固定。结果表明,近单分散介孔SiO2/Fe3O4/SiO2复合微球的介孔层厚约40 nm,具有较大的饱和磁化强度(14.715 emu/g),较小的剩余矫顽力(约为109Oe),其比表面积为391.067 m2/g,孔容为0.53 cm3/g,孔径分别在5.43 nm和20~80 nm,呈现双孔径分布。复合微球吸附漆酶后,介孔材料的比表面积与孔容分别减小为103 m2/g和0.37 cm3/g,复合微球对漆酶的吸附量为202.6 mg/g。  相似文献   

2.
吴文兵  田高明 《广州化工》2012,40(9):126-128
采用共沉淀法和溶胶-凝胶法制备了磁性Fe3O4纳米粒子及核壳型Fe3O4@SiO2复合微球,利用红外光谱(FTIR)技术测定了微球表面基团,证明了SiO2确实在Fe3O4纳米粒子的表面形成了包覆层。通过正交试验设计,利用激光粒度仪测量的微球粒径为指标,考察TEOS与磁性微球的体积比、反应温度、反应时间和乙醇浓度四因素对微球粒径的影响。结果表明TEOS与磁性微球的体积比为2、反应温度为80℃、反应时间为4 h,乙醇浓度为80%是制备大粒径Fe3O4@SiO2磁性复合微球的适宜条件。  相似文献   

3.
吕长鹏  苟兴龙 《应用化工》2011,40(5):793-795
以FeCl3.6H2O为原料,乙醇为溶剂,采用聚乙二醇(PEG-400)辅助的溶剂热法制备了大小均匀的α-Fe2O3空心微球,其直径约为900 nm,粒径分布均匀。产物经X射线衍射仪(XRD)、扫描电镜(SEM)和透射电镜(TEM)进行了表征。  相似文献   

4.
Fe_3O_4/SiO_2核壳复合磁性微球的制备和表征   总被引:1,自引:0,他引:1  
以溶剂热法制备的高磁饱和强度Fe3O4纳米颗粒为核,正硅酸乙酯(TEOS)为前驱体,采用Stber方法,在乙醇/水溶液中,通过氨水催化水解硅醇盐,制得核壳结构的Fe3O4/SiO2复合磁性微球。对制备的样品的物相结构、形貌和磁性能进行了测试表征。结果表明:制备的Fe3O4/SiO2磁性微球呈球形,粒径分布均一,SiO2壳层圆整光滑,厚度为40~70nm。X射线衍射分析显示,Fe3O4/SiO2磁性微球具有尖锐的Fe3O4特征衍射峰,表明包覆过程没有破坏Fe3O4的晶体结构,其室温下的磁滞回线呈顺磁性,且比饱和磁化强度为30A·m2/kg。此外,对SiO2壳层的包覆机理进行了探究。  相似文献   

5.
周魁  杨明  杨之卓 《有机硅材料》2011,25(3):145-148
以聚乙二醇修饰的纳米Fe3O4为种子,采用溶胶-凝胶法使正硅酸乙酯在氨水催化下进行水解、缩合反应,在Fe3O4表面包覆一层SiO2,制备了磁性Fe3O4/SiO2复合微球.复合微球粒径均一,而且具有良好的超顺磁性,饱和磁化强度Ms达31.98 A·m2/kg.最后用γ-甲基丙烯酰氧基丙基三甲氧基硅烷对Fe3O4/SiO...  相似文献   

6.
采用溶剂热法,在160℃下,以聚乙烯吡咯烷酮(PVP)为表面活性剂,制备Fe3O4/CoO复合纳米粒子;然后采用St觟ber法,在35℃下,以氨水催化正硅酸乙酯(TEOS),制备Fe3O4/CoO/SiO2复合纳米粒子。考察反应物配比、氨水浓度、醇水比对Fe3O4/CoO/SiO2复合粒子磁学性能的影响。对复合纳米粒子采用X射线衍射(XRD)、透射电子显微镜(TEM)、交流梯度磁强计(VSM)、差热分析(DTA)等手段进行表征分析。结果表明:Fe3O4/CoO/SiO2复合纳米粒子晶形生长良好,粒径在20nm左右。利用CoO进行表面修饰后,提高了纳米Fe3O4粒子的饱和磁化强度,通过包覆SiO2进行表面改性后,提高了纳米Fe3O4粒子的分散性和稳定性。实验确定了Fe3O4/CoO复合粒子与TEOS的摩尔比1∶2、TEOS与氨水的摩尔比1∶3、无水乙醇与蒸馏水的体积比2∶1为最佳反应物配比。  相似文献   

7.
以六水合三氯化铁为铁源、乙二醇为溶剂和还原剂,采用溶剂热法制备了Fe3O4磁性粒子,同时以正硅酸乙酯为硅源,在碱性条件下对其进行修饰,从而得到具有较好稳定性和分散性的Fe3O4磁性粒子。又以β-环糊精和该修饰的Fe3O4磁性粒子为原料,环氧氯丙烷为交联剂,煤油为油相,采用反相乳液聚合法成功合成了β-环糊精磁性复合微球,并通过SEM、EDS、IR及XRD等方法对该微球进行了表征。结果表明:所合成的β-环糊精磁性复合微球表面光滑,形状比较圆整,粒径大小比较均匀,平均粒径约7μm,具有磁性且保留了β-环糊精的基本结构。  相似文献   

8.
采用溶剂热法制备了Fe3O4磁性微球,利用凝胶法对Fe3O4包覆Si O2,用3-氨丙基三乙氧基硅烷修饰Fe3O4@Si O2,制备氨基功能化磁性微球。采用扫描电镜(SEM)和傅里叶红外吸收光谱仪(FT-IR)对所制备的氨基功能化磁性微球进行表征。将氨基功能化磁性微球作为辣椒碱的磁固相萃取材料,对辣椒碱进行了吸附性能实验。结果表明,在辣椒碱浓度为20μg·mL-1、吸附剂用量为40 mg、温度为20℃的条件下,氨基功能化磁性微球的最大吸附量为31.58mg·g-1。  相似文献   

9.
以油酸同步修饰共沉淀法制备的Fe3O4为铁磁性原料,通过悬浮聚合的方法制备Fe3O4/PDVB磁性复合微球,氮气氛围下烧结最终得到了具有多孔结构的Fe3O4/C磁性复合微球。采用SEM、TGA、VSM及压汞仪等手段对复合微球的形貌、磁性能和孔性能等进行了表征。结果表明,微球平均粒径约为120μm,磁含量和最大比饱和磁化强度分别为49.29%和39.31 emu/g,平均孔径和累积比表面积分别为382.5 nm和21.41 m2/g。将制得的多孔Fe3O4/C磁性复合微球用于罗丹明B(RhB)的吸附研究,微球表现出了良好的吸附效果和重复使用性。  相似文献   

10.
本研究以共沉淀法制备的Fe3O4为核,采用溶胶-凝胶法,使用正硅酸乙酯(TEOS),在Fe3O4表面包覆一层Si O2,进而用硅烷偶联剂3-(异丁烯酰氧)丙基三甲氧基硅烷对Fe3O4@Si O2复合微球进行表面改性,制得表面含有双键核壳结构的Fe3O4@Si O2复合磁性微球。采用乳液聚合法,将复合磁性微球与功能单体甲基丙烯酸羟乙酯(HEMA)共聚,得到表面带有羟基的高分子磁性微球。对所制备的复合磁性微球用傅里叶红外光谱(FT-IR)、扫描电镜(SEM)以及X射线衍射(XRD)进行表征,结果表明,成功制备出了单分散性良好的功能性高分子羟基磁性微球。  相似文献   

11.
以糠醇为炭源,Fe(NO3)2·9H2O为磁性前躯体,SiO2微球为模板采用一步浸渍法合成了磁性介孔炭,并用化学方法将含胺基官能团嫁接于磁性介孔炭的表面。利用扫描电子显微镜(SEM),红外光谱(FT-IR)和氮气吸-脱附(BET)对经乙二胺表面改性后氨化磁性介孔炭进行表征。结果表明:所合成的氨化磁性介孔炭比表面积为384 m2/g,平均孔容积为0.7 cm3/g,并具有双介孔微球结构。  相似文献   

12.
沉淀聚合法制备壳聚糖磁性微球   总被引:2,自引:0,他引:2  
要用共沉淀法制备Fe3O4磁性纳米粒子,并对其用油酸进行表面改性,继而采用沉淀聚合法制备壳聚糖磁性微球。考察了沉淀剂浓度、乳化剂种类、Fe3O4的改性等条件对制备微球的影响。应用扫描电镜、红外谱图、接触角仪、粒径分析仪及磁铁吸附对壳聚糖磁性微球的形态与特性进行了表征。研究结果表明,在适宜的沉淀剂浓度、复合乳化剂、Fe3O4经油酸改性等条件下,可以制得平均粒径为150nm、单分散性好且磁性明显的壳聚糖磁性微球。  相似文献   

13.
不同硅铝比ZSM-22分子筛的合成   总被引:1,自引:0,他引:1  
吴卓  谭涓  刘靖  尹大元 《工业催化》2010,18(1):26-30
采用静态水热合成法,以氢氧化钾为碱源,硅溶胶为硅源,1,6-己二胺为模板剂,考察了晶化温度[(423~443)K]、晶化时间[(12~72)h]和原料配比对合成ZSM-22分子筛的影响,优化了合成条件。结果表明,最佳合成条件为:晶化温度433 K、晶化时间48 h、n(Al2O3)∶n(SiO2)∶n(K2O)∶n(DAH)∶n(H2O)=0.11∶10∶1.3∶3.0∶400。在此基础上,通过碱度的调变,合成了较纯n(Al2O3)∶n(SiO2)=40~130的ZSM-22分子筛。  相似文献   

14.
通过在核壳聚合物聚(苯乙烯-丙烯酰胺)微球表面吸附Ag+继而用紫外灯光照还原,制备了P(St-AM)@Ag复合微球。采用扫描电子显微镜、紫外可见反射光谱、X-射线粉末衍射对P(St-AM)@Ag复合微球进行了表征,并研究了复合微球的气敏性。结果表明,所制备P(St-AM)@Ag复合微球对乙醚蒸气具有良好的响应性和响应稳定性,复合微球粒径越小、微球表面包覆的Ag越多,响应性越大,粒径205nm的P(St-AM)@Ag复合微球在饱和乙醚蒸气中的最大响应性可达3.12。  相似文献   

15.
以柱层层析硅胶为原料,添加粘合剂制备了大孔SiO2载体,用等体积浸渍法制备了CoMo-CA/SiO2催化剂(CoO,MoO3质量分数分别为3%,12%,n(CA):n(MoO3)=1:1)。利用BET和XRD技术进行物化性能表征,以噻吩硫脱除率考察了柠檬酸(CA)对催化剂加氢脱硫性能的影响。结果表明:制备的大孔SiO2载体比表面积380m2/g,孔容0.39cm3/g,中孔(2~50nm)占据90.2%;添加CA后,活性组分均匀分散在载体表面,XRD谱无CoO和MoO3特征峰;在T为300℃、P为3.0MPa、LHSV为2h-1及氢油体积比为600时对噻吩硫脱除率达到96%以上。  相似文献   

16.
以(NH4)2Fe(SO4)2.6H2O、NH4Fe(SO4)2.12H2O和壳聚糖为原料,经羟丙基化、氨基化,采用一步包埋法制备了一种新型的多氨基化磁性壳聚糖微球。并通过正交实验确定了改性磁性微球的最佳制备条件,即搅拌速度1200 r/min,壳聚糖用量3.0g,环氧氯丙烷用量5.0mL,乙二胺用量2.5mL。用荧光显微镜对其结构及形貌进行了观察。结果表明,Fe3O4磁性粒子已包埋了一层氨基化壳聚糖。改性磁性微球氨基含量为3.60mmol/g;呈较规则的球形,平均粒径为211.6nm。讨论在最佳条件下制备的壳聚糖微球对污水中Cu2+和Pb2+的吸附能力。  相似文献   

17.
亚微米SiO_2微球的制备与改性   总被引:1,自引:0,他引:1  
以正硅酸乙酯(TEOS)为硅源、氨水为催化剂、乙醇为溶剂,通过一种改进的溶胶-凝胶法制备了粒径在400—1000 nm的SiO2微球。为使其在油介质中具有良好的分散性,用三甲基氯硅烷(TMSCl)对所制备的SiO2微球表面进行改性,测定了改性SiO2微球的疏水程度、活化指数及亲水亲油性。扫描电镜及显微分析结果表明:未改性的SiO2微球具有良好的单分散性及球形度,但在润滑油中的分散效果不理想;改性SiO2微球表面疏水程度明显增强,活化指数增大,且在润滑油中分散性良好;并且改性剂三甲基氯硅烷的用量和改性时间对改性效果影响显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号