首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用浸渍法和干混法制备了一系列负载钼的层柱分子筛催化剂 (Mo/Al-CLM )以及负载钼的γ -Al2 O3 催化剂 (Mo/γ -Al2 O3)。通过噻吩加氢脱硫微反活性测定 ,发现两种催化剂无论是浸渍法合成的样品还是干混法合成的样品 ,均是中等钼含量的催化剂活性最佳 ;而且在相同钼含量情况下 ,两种催化剂均是干混法合成的样品的加氢脱硫活性优于浸渍法合成的样品 ;无论是浸渍法还是干混法合成的催化剂 ,相同钼含量时 ,均是Mo/γ -Al2 O3 的加氢脱硫活性优于Mo/Al-CLM。在氨溶过程中同时存在两种作用 ,一种作用是氨溶可使残余MoO3 晶相溶解掉 ,暴露出活性表面钼物种 ,可导致其活性的提高。同时 ,在氨溶过程中可发生载体表面钼物种的转化反应 ,造成表面活性钼物种的增加或减少。因此对大部分催化剂来说 ,氨溶处理可部分提高其加氢脱硫活性 ,但对干混法Mo′11(A)催化剂 ,氨溶处理后其加氢脱硫活性反而降低  相似文献   

2.
Mo/Al—CLM和Mo/γ—Al2O3催化剂的加氢脱硫性能   总被引:1,自引:0,他引:1  
采用浸渍法和干混法制备了一系列负载钼的层柱分子筛催化剂(Mo/Al-CLM)以及负载钼的γ-Al2O3催化剂(Mo/γ-Al2O3).通过噻吩加氢脱硫微反活性测定,发现两种催化剂无论是浸渍法合成的样品还是干混法合成的样品,均是中等钼含量的催化剂活性最佳;而且在相同钼含量情况下,两种催化剂均是干混法合成的样品的加氢脱硫活性优于浸渍法合成的样品;无论是浸渍法还是干混法合成的催化剂,相同钼含量时,均是Mo/γ-Al2O3的加氢脱硫活性优于Mo/Al-CLM.在氨溶过程中同时存在两种作用,一种作用是氨溶可使残余MoO3晶相溶解掉,暴露出活性表面钼物种,可导致其活性的提高.同时,在氨溶过程中可发生载体表面钼物种的转化反应,造成表面活性钼物种的增加或减少.因此对大部分催化剂来说,氨溶处理可部分提高其加氢脱硫活性,但对干混法Mo′11(A)催化剂,氨溶处理后其加氢脱硫活性反而降低.  相似文献   

3.
Mo/Al—CLM和Mo/γ—Al2O3催化剂表面上钼的分散性   总被引:1,自引:0,他引:1  
采用浸渍法和干混法制备了一系列负载钼的层柱分子筛催化剂 (Mo/Al-CLM )以及负载钼的γ -Al2 O3催化剂 (Mo/γ -Al2 O3)。利用XRD分析了样品表面上钼的分散性。结果发现 ,两种催化剂无论是浸渍法合成还是干混法合成 ,均可以使催化剂中钼在载体表面上自发分散而使晶相钼物种消失 ,而钼含量高时 ,催化剂表面上保留晶相钼物种。而且无论是浸渍法还是干混法合成的催化剂 ,相同钼含量时 ,均是Mo/γ -Al2 O3催化剂表面上钼的分散性优于Mo/Al-CLM催化剂。通过氨水处理 ,可以使低、中以及高钼含量的催化剂上所有晶相钼物种消失 ,即溶解掉一部分表面钼物种 ,改善了钼物种在载体表面上的分散性  相似文献   

4.
Mo/Al-CLM和Mo/γ-Al2O3催化剂表面上钼的分散性   总被引:1,自引:0,他引:1  
采用浸渍法和干混法制备了一系列负载钼的层柱分子筛催化剂(Mo/Al-CLM)以及负载钼的γ-Al2O3催化剂(Mo/γ-Al2O3).利用XRD分析了样品表面上钼的分散性.结果发现,两种催化剂无论是浸渍法合成还是干混法合成,均可以使催化剂中钼在载体表面上自发分散而使晶相钼物种消失,而钼含量高时,催化剂表面上保留晶相钼物种.而且无论是浸渍法还是干混法合成的催化剂,相同钼含量时,均是Mo/γ-Al2O3催化剂表面上钼的分散性优于Mo/Al-CLM催化剂.通过氨水处理,可以使低、中以及高钼含量的催化剂上所有晶相钼物种消失,即溶解掉一部分表面钼物种,改善了钼物种在载体表面上的分散性.  相似文献   

5.
以Co(NO3)2·6H2O以及(NH4)6Mo7O24·4H2O为原料,采用N2-H2为还原气,通过程序升温还原反应的氮化处理技术,合成了CoMoNx/γ-Al2O3催化剂.通过强化脱硫以及噻吩加氢脱硫反应考察了催化剂的稳定性和抗硫性能;并用XRD、XPS、IR等手段表征反应前后的催化剂.结果表明,在200h的HDS反应中负载型氮化物催化剂在反应后活性组分在载体上的分散性没有发生明显变化,催化剂具有较高稳定性;在强化硫化和脱硫反应过程中并没有使S取代氮化物表面的N而生成硫化物,只是在催化剂表面吸附形成了含S-O键的物质;负载的氮化钴钼催化剂和非负载氮化钼在200 h噻吩加氢脱硫反应中的转化率分别为99%和95%,二者抗硫性能都较好.  相似文献   

6.
采用引入钼组分的办法,调变NiO-TiO2-Al2O3体系的性能。TPR结果发现,含Mo催化剂产生了还原性能不同的多 种镍原子位。当n(Ni):n(Mo)=3.04时,形成了3个还原峰:峰Ⅰ为362.5℃,与纯NiO的最高还原峰接近;峰Ⅱ位于 482.1-491.6℃之间,与NiO-TiO2-Al2O3催化剂tm为483.4℃接近,峰形都比较宽;在430.2℃还存在1个还原态(峰 Ⅲ),说明骨架内作用的复杂性。可以推测,催化剂中加入Mo后,减弱了Ni与载体之间的相互作用力,生成了容易被还原的, 类似于纯NiO样品的Ni原子位。同时,Mo的引入增加了NiO-TiO2-Al2O3催化剂的氢化学吸附量。在Mo含量较低时,即 当n(Ni):n(Mo)=5.22和9.47时,表面镍原子浓度不高,耗氢量也低于粉状纯NiO催化剂的。随着Mo含量的增加,当 n(Ni):n(Mo)=3.69和3.04时,表面镍原子浓度高,单位质量金属镍的耗氢量远高于其它样品。证明Mo的突出作用是 提高了催化剂中活性组分镍的分散度。高钼的NiO-MoO3-TiO2-Al2O3型催化剂的选择性加氢脱芳烃精制煤油的芳烃含量 平均低于200 μg/g,所用的反应条件是,反应温度180℃,压力1.2 MPa,LHSV2.0 h-1,氢油体积比500: 1。表明n(Ni) :n(Mo)=3.04-5.22的NiO-MoO3-TiO3-Al2O3型催化剂的加氢脱芳烃性能满足煤油脱芳烃和除味的要求。  相似文献   

7.
用Faraday磁天平原位测定了Fe—Mo系加氢脱硫催化剂于氧化态及还原态时的磁化率.实验结果表明该催化剂中的铁除了有Fe_2(MoO_4)_3与α—FeOOH二种主要的高自旋Fe~(3+)形态外,还存在低自旋Fe~(3+)形态.通过对各形态的还原性的分析,探讨了各自在加氢脱硫催化活性中所起的作用.  相似文献   

8.
Mo在NiO/Al2O3-TiO2催化剂中助催化作用的研究   总被引:7,自引:1,他引:7  
采用引入钼组分的办法,调变NiO-TiO2-Al2O3体系的性能。TPR结果发现,含Mo催化剂产生了还原性能不同的多种镍原子位。当n(Ni):n(Mo)=3.04时,形成了3个还原峰:峰Ⅰ为362.5℃,与纯NiO的最高还原峰接近;峰Ⅱ位于482.1~491.6℃之间,与NiO-TiO2-Al2O3催化剂tm为483.4℃接近,峰形都比较宽;在430.2℃还存在1个还原态(峰Ⅲ),说明骨架内作用的复杂性。可以推测,催化剂中加入Mo后,减弱了Ni与载体之间的相互作用力,生成了容易被还原的,类似于纯NiO样品的Ni原子位。同时,Mo的引入增加了NiO-TiO2-Al2O3催化剂的氢化学吸附量。在Mo含量较低时,即当n(Ni):n(Mo)=5.22和9.47时,表面镍原子浓度不高,耗氢量也低于粉状纯NiO催化剂的。随着Mo含量的增加,当n(Ni):n(Mo)=3.69和3.04时,表面镍原子浓度高,单位质量金属镍的耗氢量远高于其它样品。证明Mo的突出作用是提高了催化剂中活性组分镍的分散度。高钼的NiO—MoO3-TiO2-Al2O3型催化剂的选择性加氢脱芳烃精制煤油的芳烃含量平均低于200μg/g,所用的反应条件是,反应温度180℃,压力1.2MPa,LHSV2.0h^-1,氢油体积比500:1。表明n(Ni):n(Mo)=3.04~5.22的NiO-MoO3-TiO2-Al2O3型催化剂的加氢脱芳烃性能满足煤油脱芳烃和除味的要求。  相似文献   

9.
MoCl_4乙酸乙酯溶液呈棕红色,在光谱的紫区和红区共有三个自旋允许d—d跃迁吸收带。主催化剂Mo(Ⅳ)络合物具有八面体构型。各种配体:Cl-C_8H_(17)O-,PhO-,Bd,C_8H_(17)OH,PhOH和CH_3COOC_2H_5的交换对络合物的吸收谱带的位置无影响。Mo(Ⅳ)在512nm处的特征吸收带随Al(i—Bu)_3/Mo或Al(i—Bu)_2OPh/Mo增加而渐趋消失,这是Mo(Ⅳ)被还原为低价态的标志。Bd和PhO-共存的MoCl_(4-n)(OC_8H_(17))_n—Bd—Al(i—Bu)_2OPh体系中Mo(Ⅳ)的还原得到明显改善。  相似文献   

10.
以γ?Al2O3为载体、Ni为活性组元,通过引入助剂Mo改善Ni系催化剂金属分散度,制得NiMo/γ?Al2O3催化剂(NiMo系催化剂)。采用BET、XRD、H2?TPD、H2?TPR、透射电镜等多种表征手段对催化剂进行了物性表征,并利用加氢装置对催化剂性能进行评价,考察了金属分散度对催化剂催化活性的影响。结果表明,Mo的引入可有效减弱Ni与载体的相互作用,H2?TPR谱图低温还原峰明显前移,峰强度增强,催化剂活性比表面积由0.7 m2/g增加到15.3~16.1m2/g,金属分散度由0.80%提高到18.59%,增加了催化剂表面金属活性中心数量,提高了催化剂表面金属分散度;在相同的工艺条件下处理催化裂化重汽油,NiMo系催化剂较Ni系催化剂脱硫率提高了15.7%,烯烃饱和率提高了4.9%,脱硫选择性降低了3.4%。由此可见,NiMo系催化剂兼具较好的脱硫性能和脱硫选择性。  相似文献   

11.
采用原位漫反射红外光谱技术,研究CO探针分子在浸渍法制备的Pd⁃Ag/Al2O3催化剂及Al2O3载体上的吸附行为。根据催化剂表面吸附CO后表面物种吸附形态的不同,可以判断不同制备方法所得Pd⁃Ag/Al2O3催化剂上活性中心Pd原子受到助剂Ag原子的电子效应和几何效应不同。研究发现,升温前后吸附和脱附CO时,只有Pd⁃Ag/Al2O3⁃LM⁃2催化剂上不存在CO的桥式吸附,且发现随着CO的吸附和脱附温度的升高,HCO_3的特征峰强度相对减弱,与此同时HCOO-的吸附特征峰相对增强,两者一致的消长关系说明HCO〖_3^-〗在升温的过程中转变为HCOO-。  相似文献   

12.
采用共浸渍和程序升温高纯氢气还原的方法合成了WP/γ-Al2O3催化剂,对催化剂进行了XRD、BET和XPS表征,考察了还原时间对催化剂结构的影响.通过高压微反对催化剂的二苯并噻吩加氢脱硫和咔唑加氢脱氮活性进行了评价.结果表明:增加还原时间,有利于提高活性组分在载体表面的分散度,有利于增加催化剂的比表面积.还原时间增加,催化剂表面的P/W原子比提高,表面高价态的W6+所占比例增加,而氧化态的p5+所占比例有所降低.二苯并噻吩HDS活性和咔唑HDN活性都随催化剂还原时间的增加而提高.磷化钨催化剂更有利于大分子化合物的HDN反应,是一个良好的HDN催化剂.  相似文献   

13.
采用共浸渍和程序升温高纯氢气还原的方法合成了WP/γ-Al2O3催化剂,对催化剂进行了XRD、BET和XPS表征,考察了还原时间对催化剂结构的影响。通过高压微反对催化剂的二苯并噻吩加氢脱硫和咔唑加氢脱氮活性进行了评价。结果表明:增加还原时间,有利于提高活性组分在载体表面的分散度,有利于增加催化剂的比表面积。还原时间增加,催化剂表面的P/W原子比提高,表面高价态的W^6+所占比例增加,而氧化态的P^5+所占比例有所降低。二苯并噻吩HDS活性和咔唑HDN活性都随催化剂还原时间的增加而提高。磷化钨催化剂更有利于大分子化合物的HDN反应,是一个良好的HDN催化剂。  相似文献   

14.
采用时间微分扰动角关联技术通过测定99Mo(β-)99Tc的核电四极矩相互作用研究MoO3/γ-Al2O3机械混合物在热处理过程中MoO3在载体表面上的变化.在一定的热处理条件下,MoO3在γ-Al2O3表面上可转化为类似Mo7O246-的表面聚合钼酸根化合物,并可进一步转变为加氢脱硫活性中心的前身态.适量水蒸汽的存在有利于这一转化,多量水蒸汽具有抑制作用,无水蒸汽存在时转化很慢.高温时水与MoO3生成中间化合物MoO2(OH)2在MoO3转化过程中可能起着一定作用.热处理时延长时间和提高温度均有利于MoO3在载体表面上的转化.  相似文献   

15.
用IR和XPS技术研究了FeCl3·6H2O、BiCl3改性的Pd/D(3520)催化剂,考察了金属间及金属与载体的相互作用;研究了催化剂的表面物种及电子结合能,以探讨第二种组分的作用机理以及加氢活性与活性组分的状态的关系,并讨论了p型半导体氧化物和n型半导体氧化物对加氢活性的影响。结果表明,催化剂中金属与载体无明显的相互作用,对化合物加氢起作用的是金属态钯。催化剂的加氢活性得以改变是由于Pd与Fe2O3、Bi2O3存在着较强的相互作用。催化剂的加氢活性与钯的外层价电子密度有关。  相似文献   

16.
含磷加氢处理催化剂   总被引:13,自引:0,他引:13  
综述了含磷催化剂的制备、组成、加氢脱氮 (HDN)和加氢脱硫 (HDS)活性研究。引用了在加氢精制催化剂领域中有关Ni-Mo-P、W -Ni-P、Mo -P、Ni -P、W -P、Co -Mo -P、NiPS3 、Mo -Ni-W -P等加氢精制催化剂的合成及其HDS、HDN活性方面的研究成果 ,并讨论了磷或磷化合物的加入对Mn -Ni、Ni-Mo、Ni-W、Co-Mo、Mo、W、Ni、Co等各类加氢精制催化剂结构、HDS、HDN活性的影响。磷 (或磷化合物 ,如P2 O5、磷酸、磷酸氢铵、磷化合物 )可作为加氢精制催化剂的助剂和稳定剂。但在加氢精制催化剂的研究中 ,对磷化物催化剂的合成和性能研究报道很少 ,未发现负载型磷化物催化剂的合成 ,及对其加氢脱氮和加氢脱硫活性的研究。因此 ,磷化物催化剂的制备、组成、加氢脱氮和加氢脱硫活性的系统研究目前还是一个新的领域  相似文献   

17.
稀土络合催化剂Nd(P_204)_3-Al(i-Bu)_3-H_2O的活性中心形成研究   总被引:1,自引:0,他引:1  
本文用紫外可见光谱、红外光谱及磷核磁共振的方法,研究了稀土络合催化剂Nd(P_(204))_3-Al(i-Bu)_3-H_2O活性中心的形成过程。研究表明,在络合催化剂活性中心的形成过程中,稀土金属元素钕的价态不发生改变。Al(i-Bu)_3与Nd(P_(204))_3在反应过程中发生了两者之间的烷基交换反应: >Nd-P_(204) >Al-i-Bu→i-Bu-Nd< >Al-P_(204) 少量水的加入形成了稀土三元活性中心:>Nd-O-Al< 对Nd(P_(204))_3-Al(i-Bu)_3-H_2O聚合环氧化物引发机理也用~(31)P-NMR方法进行了研究。  相似文献   

18.
通过X-射线单晶衍射,确定了化合物[MoO2(C9H6NO)2]的晶体结构.化合物晶体属单斜晶系,空间群为C2/c,晶胞参数a=1.341 6(3)nm,b=0.934 46(19)nm,c=1.362 2(3)nm,β=109.78(3)°,Z=4.该化合物通过Mo原子有一个二重对称轴.在[MoO2(C9H6NO)2]的分子结构中,Mo(Ⅵ)原子处于扭曲的八面体中心,N(1)、N(1A)、O(2)、O(2A)位于八面体的赤道位置,O(1)、O(1A)位于八面体的顶点位置.从晶胞堆积图中可看到,通过C(8)-H(8A)…O(1)有一潜在的弱的氢键,使标题化合物的结构更稳定.  相似文献   

19.
负载型氮化钴钼催化剂的制备及催化性能   总被引:3,自引:0,他引:3  
严格的环境法规规定了燃料中硫的质量分数,要求对燃料中的含硫成分进行深度脱硫,开发新型高效催化剂是降低硫的质量分数的一个有效方法。过渡金属氮化物是一种新型催化材料,其表面性质和催化性能类似于贵金属。通过一步浸渍法和分步浸渍法合成出氧化态催化剂,并以氢气和氮气通过程序升温还原反应制备出负载型氮化钴钼双金属催化剂,用模型化合物噻吩对催化剂的加氢脱硫性能进行了考察。结果表明,用分步浸渍法合成出的BⅡ类氮化钴钼催化剂的噻吩加氢脱硫活性最高;在其它条件相同情况下,高温、预活化有利于噻吩加氢脱硫反应,合成的AⅡ、BⅡ类催化剂HDS催化性能与氮化后的工业催化剂接近。应用氮化态催化剂可以避免因工业催化剂预硫化而带来的硫污染,因此具有广泛的应用前景。  相似文献   

20.
采用阳极氧化法制备适宜孔容和大比表面积的TiO2纳米管阵列,以其为载体将具有催化加氢活性的金属Mo和Ni负载其表面。通过负载前硼改性、磷修饰等手段制备了具有较大孔径(72.3nm)和比表面积(156m2/g)的催化加氢精制催化剂,并对其进行表征。催化加氢脱硫性能选用5mL固定床小试设备,以孤岛焦化柴油作为原料进行加氢评价。结果表明,压力7MPa,温度360℃,空速1.5h-1,氢油体积比为600∶1的条件下,该柴油产品脱硫率为96.6%,基本达到工业化生产的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号