首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用共浸渍和程序升温高纯氢气还原的方法合成了WP/γ-Al2O3催化剂,对催化剂进行了XRD、BET和XPS表征,考察了还原时间对催化剂结构的影响.通过高压微反对催化剂的二苯并噻吩加氢脱硫和咔唑加氢脱氮活性进行了评价.结果表明:增加还原时间,有利于提高活性组分在载体表面的分散度,有利于增加催化剂的比表面积.还原时间增加,催化剂表面的P/W原子比提高,表面高价态的W6+所占比例增加,而氧化态的p5+所占比例有所降低.二苯并噻吩HDS活性和咔唑HDN活性都随催化剂还原时间的增加而提高.磷化钨催化剂更有利于大分子化合物的HDN反应,是一个良好的HDN催化剂.  相似文献   

2.
以γ- Al2O3 为载体,采用共浸渍和程序升温H2 还原的方法,制备了一系列钒掺杂的磷化钨催化剂,对催化剂进行了XRD,BET,TG和XPS 表征。通过高压微反装置,在3 MPa,360 ℃和空速为4 h - 1 的条件下,考察了催化剂咔唑HDN 活性。结果表明,掺杂钒在一定程度上影响了活性组分WP 在载体表面的分散,当钒掺杂量达到5%时,钒与载体和活性组分间产生明显的协同效应使其结构发生细微变化。掺杂钒使催化剂前体表面的W 物种起始磷化还原温度提高而磷化还原程度降低,而载体表面高价态W6+ 数量提高。钒掺杂量为1 %的催化剂能明显增加咔唑HDN 反应活性,其咔唑HDN 转化率比不加钒的催化剂提高12. 7 %。磷化钨催化剂咔唑HDN 反应有3条路径,其中直接氢解脱氮反应(路径1) 选择性只有3. 2 %,而先加氢使两个苯环都饱和然后脱氮的反应路径(路径3) 占绝对优势,其选择性为91. 0 %。与未掺杂钒的磷化钨催化剂相比,掺杂1 %钒的催化剂的咔唑HDN 反应直接氢解脱氮选择性有所降低,通过路径3 的反应选择性降低6. 7 % ,而先加氢使一个苯环饱和然后脱氮(路径2) 的选择性提高7. 3 %。  相似文献   

3.
助剂对WP/γ-Al2O3催化剂二苯并噻吩加氢脱硫活性的影响   总被引:3,自引:0,他引:3  
以γ-Al2O3为载体,以Ni、Co及P为助剂,采用程序升温还原法合成了不同助剂含量的负载型磷化钨催化剂,并对合成的催化剂进行了BET、XRD、NH3-TPD和TEM表征.以二苯并噻吩、环己烷为模型化合物,通过高压微反装置,对催化剂的加氢脱硫(HDS)活性进行了测定.结果表明,助剂Ni、Co对催化剂的表面酸性和活性组分分散有一定的影响,适量助剂Ni、Co和过量P的加入有利于提高负载型磷化钨催化剂的加氢脱硫活性,当镍或钴助剂质量分数为3%时,催化剂具有最佳的催化活性,在低温300℃和高温360℃时其二苯并噻吩脱硫率均在90%以上;在反应温度320℃时,过量5%的P比同样含量的助剂Ni或Co具有更好的助催化作用.低温有利于催化剂二苯并噻吩加氢脱硫,高温有利于噻吩加氢脱硫.  相似文献   

4.
新型磷化钨催化剂合成条件及加氢性能考察   总被引:3,自引:0,他引:3  
考察了合成条件对新型加氢精制催化剂磷化钨结构的影响。催化剂表征结果表明 ,合成温度对催化剂结构有较大影响 ,而还原氢气流量和还原时间的影响不大。在适宜的合成条件下 ,考察了共浸渍法制备的非负载和负载型磷化钨催化剂的噻吩加氢脱硫 (HDS)和吡啶加氢脱氮 (HDN)性能。结果表明 ,负载型磷化钨催化剂有利于提高催化剂的催化加氢精制性能 ,高温对HDS有利 ,低温对HDN有利。 30 0℃时 ,负载型磷化钨催化剂的HDS率和HDN率分别为 4 9.32 %和 72 .97% ,而 340℃时HDS率和HDN率分别为 84 .98%和 70 .4 9%。磷化钨催化剂是良好的加氢脱氮催化剂  相似文献   

5.
研究了Pd/C催化剂制备因素对加氢催化活性的影响,实验结果表明,活性中心之间存在着“集团效应”;Pd/C催化剂中Pd含量较高时,催化剂具有较高的比活性;载体颗粒小,则有利于提高活性组份的分散度,但由于“集团效应”,只有适当的载体粒度才有利于提高Pd/C催化剂的活性。载体的酸洗预处理也能促进催化剂治性提高,还原方式与条件亦有一定的影响。  相似文献   

6.
通过程序升温还原磷钼酸盐前体的方法制备了无负载和负载型磷化钼催化剂,并采用TG-DTG,XRD和BET技术对催化剂进行表征。采用高压连续微反装置,以二苯并噻吩、喹啉的混合体系为模型化合物考察了MoP,MoP/γ-Al2O3,CoMoP/γ-Al2O3催化剂的加氢脱硫和加氢脱氮活性,反应温度为340℃,反应压力为3.0MPa。结果表明,合成的无负载和负载型磷化钼催化剂表面均出现活性组分MoP的特征衍射峰;负载后催化剂的比表面积为74.4 m2/g;3种磷化钼催化剂的程序升温还原过程均出现明显的失重过程,MoP/γ-Al2O3前体开始还原转化的温度约为509℃。CoMoP/γ-Al2O3催化剂的HDS活性在适当反应条件下可达98.54%;当模型化合物中硫氮含量大幅提高时,催化剂的活性并未明显降低。  相似文献   

7.
含磷加氢处理催化剂   总被引:13,自引:0,他引:13  
综述了含磷催化剂的制备、组成、加氢脱氮 (HDN)和加氢脱硫 (HDS)活性研究。引用了在加氢精制催化剂领域中有关Ni-Mo-P、W -Ni-P、Mo -P、Ni -P、W -P、Co -Mo -P、NiPS3 、Mo -Ni-W -P等加氢精制催化剂的合成及其HDS、HDN活性方面的研究成果 ,并讨论了磷或磷化合物的加入对Mn -Ni、Ni-Mo、Ni-W、Co-Mo、Mo、W、Ni、Co等各类加氢精制催化剂结构、HDS、HDN活性的影响。磷 (或磷化合物 ,如P2 O5、磷酸、磷酸氢铵、磷化合物 )可作为加氢精制催化剂的助剂和稳定剂。但在加氢精制催化剂的研究中 ,对磷化物催化剂的合成和性能研究报道很少 ,未发现负载型磷化物催化剂的合成 ,及对其加氢脱氮和加氢脱硫活性的研究。因此 ,磷化物催化剂的制备、组成、加氢脱氮和加氢脱硫活性的系统研究目前还是一个新的领域  相似文献   

8.
用IR和XPS技术研究了FeCl3·6H2O、BiCl3改性的Pd/D(3520)催化剂,考察了金属间及金属与载体的相互作用;研究了催化剂的表面物种及电子结合能,以探讨第二种组分的作用机理以及加氢活性与活性组分的状态的关系,并讨论了p型半导体氧化物和n型半导体氧化物对加氢活性的影响。结果表明,催化剂中金属与载体无明显的相互作用,对化合物加氢起作用的是金属态钯。催化剂的加氢活性得以改变是由于Pd与Fe2O3、Bi2O3存在着较强的相互作用。催化剂的加氢活性与钯的外层价电子密度有关。  相似文献   

9.
以柠檬酸(CA)为助剂,采用共浸渍和程序升温还原的方法制备了不同n(CA)/n(WP)的WP催化剂。并用X射线衍射(XRD)、比表面积测定(BET)、扫描电镜(SEM)、热重(TG)分析等方法对催化剂进行了表征,通过高压微反评价了催化剂的噻吩加氢脱硫(HDS)性能。结果表明,柠檬酸并没有改变WP的本体结构,但具有阻止WP晶相颗粒生长的作用,并提高了WP催化剂的BET比表面积。加入柠檬酸改变了硝酸根的分解过程,降低了催化剂的起始磷化还原温度和磷化还原过程终结温度,有利于活性组分在催化剂表面的分散。柠檬酸对WP催化剂噻吩HDS反应有利。Cat-5催化剂具有相对最好的HDS活性,与不加柠檬酸的催化剂相比,其噻吩转化率提高近20.4%。  相似文献   

10.
常温浸渍-水热改性法制备Mo-Ni/Al2O3催化剂   总被引:1,自引:0,他引:1  
利用水热技术对常温浸渍法制备的Mo-Ni/Al2O3催化剂进行改性处理,以吡啶脱氮为模型反应.评价了水热改性前后催化利的加氢脱氮(HDN)性能.研究结果表明:水热改性可提高金属活性组分的包覆量、增加催化剂的比表面积、改善孔径分布,提高了催化剂的加氢脱氮性能.  相似文献   

11.
二苯并噻吩(DBT)作为石油中最难脱除的含硫组分之一,对其加氢脱硫(HDS)过程的研究有着十分重要的意义.针对二苯并噻吩在加氢脱硫过程中各含硫物质在镍钼硫(NiMoS)催化剂表面吸附情况,采用量子化学中密度泛函理论方法,计算了二苯并噻吩(DBT)、四氢二苯并噻吩(4H—DBT)、六氢二苯并噻吩(6H--DBT)和十二氢二苯并噻吩(HY—DBT)等四种含硫物质于NiMoS催化剂表面上吸附能.主要研究垂直吸附和平行吸附两种吸附方式,研究结果表明,各含硫化合物在NiMoS催化剂表面上的吸附过程都是放热过程.当DBT、4H—DBT、6H—DBT和HY—DBT四种硫化物垂直吸附于催化剂表面,此时形成稳定构象,且各体系吸附能逐渐增大;而当各硫化物平行吸附时,各体系吸附能呈减小的趋势.其中DBT在催化剂表面吸附时,垂直吸附形式和平面吸附形式可能同时存在,而4H—DBT、6H—DBT和HY—DBT三种含硫物质则更易以垂直吸附形式吸附于催化剂表面.同时DBT、4H—DBT、6H—DBT和HY—DBT在NiMoS催化剂上吸附能较硫化钼(MoS2)催化剂更低.  相似文献   

12.
采用气相流动吸附法制取了TiO2/γ-Al2O3复合载体,浸滞法担载一定量MoO3。用XRD,TPR方案考察了MoO3的分散状态,中压固定床反应装置测定了催化剂的噻吩加氢脱硫和环己烯加氢活性,结果表明,TiO2的加入能减弱MoO3与γ-Al2O3间的相互作用,促进MoO3的还原,提高催化剂的加氢脱硫活性。  相似文献   

13.
镍钨系列氮化物催化剂的加氢脱硫催化性能   总被引:5,自引:0,他引:5  
利用程序升温还原技术,以γ-Al_2O_3为载体,采用浸渍法和混合法制备了一系列不同金属负载量的氮化镍钨加氢精制催化剂NiWN_x/γ-Al_2O_3,在固定床高压微反装置上进行噻吩加氢脱硫实验,考察其加氢脱硫性能。结果表明,不同的制备方法和金属负载量对催化剂催化性能的影响很大。氮化镍钨催化剂(ω(Ni)=2.8%,ω(W)=28%)在反应中表现出优异的催化性能,浸渍法制备的氮化镍钨催化剂比混合法制备的催化剂活性高,氮化镍钨催化剂和氮化态工业催化剂比硫化态工业催化剂的HDS活性高。  相似文献   

14.
以凹凸棒石黏土为载体采用浸渍还原-气相沉积负载Pd和AlCl3制备了Pd-AlCl3-凹土加氢催化剂,并用于苯酚选择性加氢制环己酮。采用XRD、EDX和SEM对催化剂进行了表征,考察了AlCl3、Pd含量以及反应条件对苯酚加氢制环己酮的影响。结果表明:气相沉积法可将AlCl3均匀分散到凹凸棒石晶体表面并提高其固载量,AlCl3的引入和Pd含量的增加可增加催化剂的活性,提高产物环己酮选择性。适宜的反应条件为Pd含量5%,反应温度80℃,反应时间3h,此时催化剂活性最好,苯酚转化率为99.99%,环己酮选择性可达到100%。  相似文献   

15.
采用气相流动吸附法制取了TiO2/γ-Al2O3复合载体,浸滞法担载一定量MOO3.用XRD,TPR方法考察了MOO3的分散状态,中压固定床反应装置测定了催化剂的噻吩加氢脱硫和环己烯加氢活性.结果表明,TiO2的加入能减弱MOO3与γ-Al2O3间的相互作用,促进MOO3的还原,提高催化剂的加氢脱硫活性  相似文献   

16.
(99)~Mo(β-)~(99)Tc时间微分扰动角关联法应用于加氢脱硫Mo/γ-Al_2O_3催化剂的表面性质研究,通过测定催化剂上钼原子的核电四极矩相互作用来表征催化剂表面的不同钼物种。并与噻吩加氢脱硫活性相关联。氧化态催化剂主要存在八面体配位钼物种Mo[O]和加氢脱硫活性中心的前身态Mo(Ⅵ)_前。氢还原态催化剂主要含有八面体配位的四价钼物种Mo~(4+)[O]和加氢脱硫活性中心的前身态MO(Ⅳ)_前。Mo(Ⅵ)_前和Mo(Ⅳ)_前在催化剂表面上单层分散,与载体之间有较强的相互作用,具有抗氨水溶解能力,其含量主要受催化剂钼含量,助剂钴原子和催化剂焙烧温度等因素影响。Mo[O]在催化剂表面上可多层存在,与载体表面之间的相互作用较弱。  相似文献   

17.
负载型氮化钴钼催化剂的制备及催化性能   总被引:3,自引:0,他引:3  
严格的环境法规规定了燃料中硫的质量分数,要求对燃料中的含硫成分进行深度脱硫,开发新型高效催化剂是降低硫的质量分数的一个有效方法。过渡金属氮化物是一种新型催化材料,其表面性质和催化性能类似于贵金属。通过一步浸渍法和分步浸渍法合成出氧化态催化剂,并以氢气和氮气通过程序升温还原反应制备出负载型氮化钴钼双金属催化剂,用模型化合物噻吩对催化剂的加氢脱硫性能进行了考察。结果表明,用分步浸渍法合成出的BⅡ类氮化钴钼催化剂的噻吩加氢脱硫活性最高;在其它条件相同情况下,高温、预活化有利于噻吩加氢脱硫反应,合成的AⅡ、BⅡ类催化剂HDS催化性能与氮化后的工业催化剂接近。应用氮化态催化剂可以避免因工业催化剂预硫化而带来的硫污染,因此具有广泛的应用前景。  相似文献   

18.
纳米CeNi/γ-A12O3加氢催化剂的活性与稳定性   总被引:1,自引:0,他引:1  
以甲苯气相加氢反应为探针,在微反-色谱装置上测定了纳米CeNi/γ-A12O3加氢催化剂的活性和稳定性。通过TEM和DSC—TG对催化剂进行了表征。实验证明:纳米CeNi/γ—A12O3加氢催化剂比工业用加氢催化剂节约活性组分约70%,经l200h连续运转后,甲苯加氢转变为甲基环己烷的转化率仍保持在99%以上,表明该纳米加氢催化剂具有很高的加氢活性和良好的稳定性。  相似文献   

19.
研究V2O5/TiO2催化剂的制备工艺,如载钒量、煅烧时间、助催化剂和浸渍次数等,对催化剂表面结构及催化分解气相邻二氯苯的影响。采用漫反射紫外光谱(DRUVS)、X射线衍射(XRD)、BET等方法对催化剂进行表征。结果表明,随着载钒量的增大,催化剂表面活性物质含量增多,催化性能增强;延长煅烧时间会导致催化剂的团聚增加、比表面积减少,但有利于催化剂表面生成低聚态活性钒和V4+,从而提高其催化活性;添加助催化剂WO3和采用多次浸渍均能抑制活性钒的团聚,促进表面低聚态活性钒的分散;单聚和低聚钒酸盐是VOx/TiO2催化剂的活性物质,而高聚钒对催化分解气相邻二氯苯有抑制作用。  相似文献   

20.
对塔河常渣和沙轻减渣在不同催化剂存在下的加氢处理反应产物分布进行了研究。结果表明,可以采用单位生焦的裂化转化率(x1/xcoke)或者裂化转化率与单位缩合转化率(x1/x2)之比来表示渣油加氢催化剂的活性或选择性,表征结果与传统的认识相一致。不同催化剂对加氢反应产物的影响不同。渣油加氢催化剂主要通过提供活性氢原子来抑制大分子自由基的缩合及裂化反应,从而影响产物分布。不同催化剂在渣油加氢过程中抑制缩合反应的性能不同,实验所研究3种催化剂抑制缩合反应的能力为B〉C〉A,其裂化转化率与单位缩合转化率之比的差值最高可达4.3。渣油加氢催化剂对反应结果的影响,既与催化剂的活性组分含量及种类有关,也与活性组分的匹配比例有关,还与催化剂的表面结构有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号