首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 591 毫秒
1.
针对西藏甲玛矿区高泥铜铅锌矿石性质复杂、氧化率高、现场浮选回收率低的特点,采用硫化钠作为硫化剂及矿泥调整剂,XP4作为组合捕收剂,丁铵黑药作为辅助捕收剂,开展了条件优化试验、开路流程试验和闭路试验研究.通过一粗三精两扫、中矿顺序返回的浮选闭路流程,在原矿含Cu 0.53%,含Pb 1.29%,含Zn 0.54%,Au和Ag含量分别为0.28 g/t、23.6 g/t的条件下,获得的浮选混合精矿的技术指标为:Cu品位为7.72%,回收率为70.15%;Pb品位为22.17%,回收率为90.98%;Zn品位为4.81%,回收率为42.19%;Au品位为1.8 g/t,回收率为47.41%;Ag品位为340.4 g/t,回收率为77.32%.与现场生产指标对比,铜的回收率提高了17个百分点,铅的回收率提高了39个百分点.  相似文献   

2.
云南某锌窑渣Cu含量1.47%,Ag含量312 g/t,同时,窑渣中碳含量高达23.12%,为综合回收其中的Cu、Ag等有价金属进行了选矿试验研究.对浮选条件试验进行了研究.确定了最佳浮选条件并在此基础上进行了浮选闭路试验,结果表明,采用单一浮选工艺处理该窑渣Cu、Ag很难富集,铜精矿品位较低,并最终确定了"脱碳浮选—铜浮选—铜精矿浸出"的联合工艺流程,得到最终铜精矿Cu品位为11.83%,铜精矿含Ag品位为2 616 g/t,Cu、Ag的综合回收率分别为72.03%和75.06%,达到了综合回收窑渣中Cu、Ag的目的.采用联合工艺流程处理该窑渣避免了单一浮选工艺的局限性,极大地提高了铜精矿的品位.  相似文献   

3.
为了从多金属复杂难选金矿中综合回收金、铜等有价元素 ,采用氧化强化浮选工艺 ,在原矿 w(Cu) =1 .0 9%、w(Au) =3 .92 g/ t的情况下 ,充气氧化时间为 1 0 min时 ,可较好地实现铜硫分离 ,可获得铜品位1 5 .1 1 %、回收率 77.48%~ 77.72 % ,含金 3 6.3 5~ 3 8.42 g/ t、回收率 5 9.0 0 %~ 62 .3 5 %的合格铜精矿 .  相似文献   

4.
为了从多金属复杂难选金矿中综合回收金、铜等有价元素,采用氧化强化浮选工艺,在原矿w(Cu)=1.09%、w(Au)=3.92g/t的情况下,充气氧化时间为10min时,可较好地实现铜硫分离,可获得铜品位15.11%、回收率77.48%~77.72%,含金36.35~38.42 g/t、回收率59.00%~62.35%的合格铜精矿.  相似文献   

5.
对贵州某地混合铜矿石进行了选矿试验研究。原矿入选品位Cu 1.27%、Ag 3.80 g/t,含As 4.46 g/t,铜氧化率为23.87%,属混合铜矿。根据矿石性质,分别拟定并开展了"氧硫混选""氧硫分选"和"浮选—尾矿酸浸"3种选铜工艺的探索对比试验,试验结果表明,"浮选—尾矿酸浸"是适宜的选铜流程。试验表明:1)在较佳的分选条件下,原矿经"浮选—尾矿酸浸"联合流程选别后,可获得铜精矿产率4.41%、Cu品味20.52%、回收率73.05%;浸液铜品位880.00 mg/L、浸出率14.16%,铜总回收率87.21%的技术经济指标。铜得到了回收利用。  相似文献   

6.
某地含Ag900-1000g/t Au27g/t的粗铅,经真空炉连续三次蒸馏和一次间断蒸馏,可使残留物中含Ag达75%,含Au达2.4%。  相似文献   

7.
某地含 Ag900—1000g/t Au27g/t 的粗铅,经真空炉连续三次蒸馏和一次间断蒸馏,可使残留物中含 Ag 达75%,含 Au 达2.4%.  相似文献   

8.
研究了在低碱条件下淀粉、焦性没食子酸、水杨酸、单宁酸、乳酸等多种有机抑制齐j及它们之间的组合物对黄铜矿、黄铁矿可浮性的影响.选择焦性没食子酸+单宁酸作为黄铁矿的高效抑制剂,进行铜硫人工混合矿的浮选分离试验和实际矿石的铜硫浮选分离试验,该工艺与传统的石灰工艺比较,铜精矿中的金的品位提高1.24g/t,回收率提高7.74%;银的品位提高4.56g/t,银的回收率提高6.18%;钼的品位提高0.145%,钼的回收率提高35.29%.最后对其作用机理进行分析.  相似文献   

9.
为提高大冶铁矿的硫钴精矿中的钴品位,以CS活化剂调浆,在矿浆浓度(质量分数)29.63%、pH值为9(硫酸调节)、捕收剂为丁基黄药(用量70g/t)、起泡剂为2^#油(用量70g/t)的条件下活化再选,钴品位可达到0.28%.回收率为98.2%.  相似文献   

10.
Cu、Ag、Au价电子结构参数统计值及熔点的理论研究   总被引:2,自引:1,他引:1  
基于“固体与分子经验电子理论”(EET),分析了Cu、Ag、Au的价电子结构,计算了一组表征金属单质性质的价电子结构参数统计值E'A,T'm ,利用价电子结构参数统计值讨论了Cu、Ag、Au的熔点问题。计算结果表明,E'A 值越大,其对应金属的熔点越高,且E'A 的变化趋势与实验相吻合;Cu、Ag、Au熔点的统计值分别为T'Cum=1351.0K、T'Agm=1126.2K、T'Aum=1305.0K,相应的实验值偏差依次为0.41%、8.82%、2.33%。  相似文献   

11.
不改变因民公司选厂现有浮选工艺流程,并在保持现有铜选矿技术指标(铜回收率84.50%,铜精矿品位24%)不变的基础上,通过试验研究,将铜精矿中的金品位由现在的0.80 g/t提高到1.00 g/t(计价品位)以上,提高企业收入,同时提高资源综合利用率,实现矿山的持续健康发展。  相似文献   

12.
In this work, different flotation–preoxidation–cyanidation methods are considered for treating a low-grade refractory gold ore. On the one hand, the results of selective flotation show that 22% and 31.1% of total Sb and As, respectively, remained in the final tailings and only about 28% of the total Au remained for further cyanidation processes. On the other hand, in bulk method of flotation the maximum Au recovery of 90.6% achieved after 60 min of flotation at the grind size with K80 of 146 micron. In addition, the bulk flotation method resulted in the concentrate with low concentrations of Sb and As elements. To improve the recovery of low-grade refractory gold ores, flotation should be followed by roasting, biological, or pressure oxidation processes so that the gold could be liberated prior to cyanidation processes. It is also found that the pressure oxidation pre-treatment of the concentrates prior to cyanidation may yield high gold recoveries of over than 83%. In these processes, recoveries are controlled by the temperature and the oxygen partial pressure in the solvent. However, by utilizing the bio-oxidation technique, the oxidation of sulfur to sulfate cannot be completed and, consequently, the gold recovery may be limited to only 72.2%.  相似文献   

13.
含有贵金属金的废弃印刷线路板有较高回收价值。采用氨基磺酸腐蚀法,浸出镀金层下的铜和镍,回收得到金箔。探索氨基磺酸法回收金的最佳工艺条件,研究结果表明:常温条件下,取内存条与氨基磺酸溶液的固液比(g/mL) 1:5,双氧水体积分数15%,氨基磺酸浓度70 g/L,废旧内存条浸出时间120 min (不同类型板因镀层差异剥落时间稍有差异),此工艺条件下金的回收率可以达到96%以上。氨基磺酸腐蚀法对金的回收选择性好,剥离的金箔可直接熔炼,脱金后的线路板可用于回收其他金属和非金属;溶液回收铜镍后,可循环使用,实现回收过程中的闭路循环,减轻环境污染。  相似文献   

14.
某低品位锡尾矿中锡和硫的品位分别为0.27%和5.07%,具有综合回收价值,锡和硫在-0.025 mm粒级的分布率分别为61.64%和76.74%,综合回收难度较大. 试验结果表明,摇床和磁选均没有显著地选别效果,浮选则可以较好地达到选别的目的;选别工艺上,可先使用浮选预先脱硫,脱硫后进一步选别锡;相对于摇床,浮选能更有效地回收锡;硫化矿的存在会显著影响锡的选别,较为彻底的脱硫可改善锡的浮选指标;使用三段浮选脱硫工艺,硫的脱除率可达90%以上;脱硫的过程中会损失部分的锡,可通过对硫粗精矿再磨后,完成锡和硫的进一步分离;通过浮选闭路流程,最终可获得硫品位和回收率分别为42.71%和89.84%的硫精矿,以及锡品位和回收率分别为3.16%和60.37%的锡精矿.  相似文献   

15.
在浮选黑石山铜矿石中,使用CaO-YN-2代替CaO作抑制剂,不仅能有效抑制黄铁矿,得到优质铜精矿,而且使精矿中银的品位和回收率都得到上升.明显提高了矿产资源利用率.  相似文献   

16.
Based on the mineralogical characterization for the polymetallic sulfide ore, the way to improve silver recovery was studied. The results showed that silver was the most valuable metal whose grade was 448.82 g/t Ag, while 0.118% Cu, 1.65% Pb and 1.06% Zn may be comprehensively utilizated. The main silver-bearing minerals were argent and aregentite which accounted for 87.18% of total silver. Argentite and other metal minerals were distributed in the gangue minerals in complex forms. Argentite grains of 33.76% minus 50 μm indicated that a fine grinding scheme was necessary to enhance the degree of dissociation, and meanwhile selective grinding must be considered to prevent a complete grinding of coarse grains. The optimum regrinding fineness in the Cu flotation was determined as 73% minus 37 μm, while grains of 68.5% minus 74 μm in one-stage grinding remained unchanged as much as possible. Consequently, silver recovery increased to 2.68%, as well as the content of Pb simultaneously decreased from 7.26% to 2.68% in the Cu concentrate. From the lead pyrometallurgical point of view, recovering larger amounts of silver and lead at the expense of decreasing the grade of lead to a suitable level is not only economically viable for the plant, but also convenient for subsequent processing. Silver and lead recovery increased to 13.18% and 12.58%, respectively, while the Pb grade decreased from 53.1% to 46.12% for the Pb concentrate.  相似文献   

17.
Pretreatment of copper-bearing refractory gold ores by bio-heap leaching   总被引:1,自引:0,他引:1  
The refractory gold ores associated with rich copper and trapped in pyrite and quartz were studied. With conventional technique (all-sliming cyanidation), the gold recovery rate is only 51.78%. To eliminate the negative effects of copper and pyrite on cyanidation and increase the gold recovery rate, the investigation on bio-heap leaching pretreatment was made, by which Cu would be dissolved and gold would be liberated from pyrite. The experiment adopted mixed bacteria, mainly ThiobaciUus ferrooxidan (named T.fl ), as the bacterial catalyst for bio-preconditioning and was carried out in a PVC column with a diameter of 20 cm and a height of 1.3 m loaded with gold ores. The temperature was controlled between 28 and 30℃, the pH value was kept between 2.0-2.5, and the flux of sprinkling bacterial liquid was maintained 0.80 L/h. After 45-day's bio-oxidization, among the samples sizing from 0 to 5 mm, the oxidation rates of Cu, Fe and S were respectively 44.62%, 28.16% and 25.46%, and the gold recovery rate by cyaniding increased to 80.35%. The bio-heap leaching pretreatment can therefore effectively dissolve Cu and liberate gold from pyrite and lead to the increase of gold extraction.  相似文献   

18.
Granulite xenoliths are important samples for understanding the forming and evolution of the crust. The granulite xenoliths enclosed in Cenozoic basalt of Hannuoba, Hebei Province, China, contain four types of sulfide assemblages: isolate rotundity enclosed sulfides, intergranular sulfides between minerals, secondary sulfide inclusions ranging in linear, and fissure-filling sulfides.Electron microprobe analysis shows that the components of sulfides are Ni-poor pyrrhotite with the molar ratios of (Ni Co Cu)/Fe less than 0.2. The molar ratios of (Fe Cu Co Ni)/S are less than 0.875 of normal pyrrhotite, and are less than those of mantle xenoliths, reflecting a sulfur-saturated environment. Pyrrhotite in various occurrences contains some Au and Ag, with the averages of 0.19wt%-0.22wt% Au and 0.01wt%-0.02wt% Ag, showing the gold mineralization related to the granulitization of low crust. Ni, Co and Cu have a normal correlation with S in pyrrhotite, indicating that heavy metal elements have a same source similar to sulfur because of the degasification of upper mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号