首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 126 毫秒
1.
随着近年来高层建筑的大规模建设,基坑开挖深度逐渐增大,由于深基坑通常位于城市的繁华地带,且常常紧邻各种建筑物,如何处理好基坑开挖及支护等施工过程对周边环境的影响,成为基坑工程研究的关键。本文以近接浅基础建筑物的桩锚支护结构深基坑为工程背景,基于现场实测数据深入分析了桩体变形、桩顶位移和建筑物沉降等变化规律,基于Plaxis有限元软件建立数值模型,经模型计算结果与现场监测数据对比选取合理的土体本构模型,探讨了邻近建筑物基础位置和地基附加应力两个关键参数对桩锚支护结构基坑与邻近建筑物本身的影响规律。研究表明:混凝土支撑和冠梁在控制围护桩顶变形的同时会增大坑角效应的影响范围;对于基坑开挖卸载问题,HS模型相对于MC模型具有更准确的模拟效果;基坑施工主影响区域约围护结构后方2.5He(基坑开挖深度),建筑物平均沉降最大值和倾斜度最大值位置分别位于距围护结构约0.6He和1.1He处;建筑物平均沉降值δva最大值位置与地表沉降最大值位置吻合,倾斜度最大值位置约位于地表沉降曲线反弯点处;针对本工程,当建筑物基础埋深为2.5m,基坑围护桩与建筑物中心距离在7.5-52.5m范围内变化时,建筑物平均沉降和倾斜度最大值分别约为8.3mm和0.00025;平均每增高一层建筑物,其沉降值和倾斜度分别增加约0.9mm和0.7×10-4,基坑围护结构最大侧移量增加1.4-2.0mm,其增量随层数增高而增加。  相似文献   

2.
地铁盾构法施工会引起临近建筑物的地表沉降,合理地确定其影响范围可为建筑物的检测加固提供理论依据。文章以济南市R2线、M3线沿线地质盾构隧道穿越某既有框架结构为工程背景,采用ANSYS软件对盾构隧道施工引起的临近地表建筑物沉降进行了数值分析。结果表明:2种埋深条件下,建筑物远、近隧端2侧相邻柱基间的地表的沉降差均随着2条隧道中心线与建筑物中心线水平距离的增加呈现出先增大后减小的趋势;当隧道埋深一定时,大净距及小净距条件下分别对应的地表沉降影响范围和相邻柱基间的地表沉降差显著;济南市R2线及M3线盾构法开挖过程扰动影响范围的经验公式及极限值与数值模拟得出的影响范围值基本吻合。  相似文献   

3.
基于遗传算法的浅埋隧道开挖地表沉降神经网络预测   总被引:1,自引:1,他引:1  
分析了城市浅埋隧道开挖地表沉降的主要影响因素,并建立了基于遗传算法的神经网络浅埋隧道开挖地表沉降预测模型.使用有限元数值模拟正演算法获得神经网络模型学习样本,对模型进行学习训练.该预测模型在某市轻轨隧道地表沉降预测中进行使用,结果表明:基于遗传算法的神经网络对隧道开挖地表沉降的预测是可行的,预测结果比较准确,能较好地指导隧道施工,确保地表建筑物的安全.  相似文献   

4.
为了预测基坑降水引起的周边建筑物直接损失,提出环带分析法确定地面沉降和沉降梯度;用S型曲线拟合建筑物直接损失率与地面沉降梯度之间的关系,并用实例验证预测模型的适用性.随着与基坑边壁距离增加,地面沉降梯度总体上呈递减趋势,但当环带中心位置自然水位处于不同土层界面时,沉降梯度会发生突变.基坑降水引起的相邻建筑物直接损失随水位降深增大总体上呈上升态势,但当受水位和土层特殊分布位置关系影响时,损失曲线会有波动.  相似文献   

5.
土钉支护工程施工中的环境变形监测   总被引:1,自引:0,他引:1  
以采用无砂混凝土小桩和土钉分段支护的基坑工程为背景,具体介绍坑壁测斜、邻域内结构物沉降监测方法及成果,并对成果进行分析,认为基坑降水和CFG桩施工对基坑底面以上的粉土层扰动最大,邻域内结构物的沉降与其基础埋深和距离基坑的远近直接相关。当基础埋澡浅位于基坑降水影响范围内时,结构物受基坑施工影响较为明显。  相似文献   

6.
以杭州地铁某车站深基坑开挖为工程背景,对该基坑开挖引起的支撑轴力、地表沉降、建筑物沉降以及周边地下管线沉降实测数据进行分析.研究结果表明:基坑开挖初期提高支撑轴力监测频率并加快支撑的布设,是保证基坑安全施工的重要手段;后续支撑的架设会使第一道支撑轴力产生拉力,要防止第一道支撑与围护结构脱开;地表沉降最大点与基坑边有一定距离,沉降曲线多呈盆形;基坑开挖会使邻近建筑物产生不均匀沉降;周边地下管线与地表的沉降大小和测点与基坑的相对位置有关,标准段附近沉降大于端头井段,标准段中部沉降最大,平行于基坑边的管线产生不均匀沉降.  相似文献   

7.
通过对盐城一深基坑支护设计对周边六层浅基础建筑的影响分析,结合现有相关的国家规范,从基坑周边土体和建筑物变形两个方面综合分析,阐述了深基坑设计过程中,如何对支护周边地表沉降进行计算控制,以保证周边建筑物的安全,同时取得最优经济效益。  相似文献   

8.
基于黄土地区深大基坑桩锚支护结构变形、位移,锚索轴力及建筑物沉降等监测数据与数值计算结果的对比分析,得出以下结论:基坑支护结构桩顶水平位移、桩顶沉降、桩身水平位移,临近建筑物沉降等监测值均远小于规范规定的预警值,表明该基坑支护结构设计合理;基坑降水,尤其降水速率的变化,对地表及临近建筑物沉降有显著影响;桩身底部向基坑内的最大水平位移为8.9 mm;基坑开挖过程中支护结构的监测值与数值计算结果吻合较好.  相似文献   

9.
随着中国交通建设的发展,地铁成为城市交通最重要的交通工具之一。地铁运营期间,车辆运行产生的动荷载造成临近土体与建筑物沉降,影响地铁的安全运行以及地铁沿线构筑物的正常使用。文章以数波叠加形式的激振力函数表示列车荷载,采用Plaxis3D软件建立模型,分别对不同隧道埋深、隧道与建筑物水平距离、建筑物荷载3种工况进行模拟分析,研究地铁车辆运行对周围土体与建筑的影响。结果表明:隧道下方土体沉降随着动力时间的增加而增大,其增加速率逐渐减小,影响范围在隧道下方-5 m范围内;地表建筑物沉降随水平距离增加而增大,在一定区域内出现振动响应局部放大现象;隧道埋深-11 m时,随深度的增加,地表沉降值变化较小;建筑物荷载对地表沉降有约束作用,但改变荷载大小后该约束作用变化较小。  相似文献   

10.
为准确预测埋入式(特别是浅埋)钢柱脚节点的初始转动刚度,将柱脚的埋入段简化为地基梁,基于初参数法完善考虑轴力影响的Winkler地基上的Timoshenko梁理论,提出受锚栓和混凝土约束的柱脚底板转动刚度的计算方法,进而建立可以综合反映柱脚埋深、埋入段剪切变形、钢柱轴力、底板约束影响的埋入式钢柱脚转动刚度模型。基于已验证的有限元模型进行参数分析,研究埋深比、轴力和锚栓布置对柱脚转动刚度的影响。与有限元结果的对比表明,提出的刚度模型较过往文献中理论模型具有更高的精度和更好的适用性,尤其是对于埋深比为0.5~1.5的浅埋柱脚节点。理论与有限元结果表明:埋深比较小时,柱脚转动刚度随埋深比的增加快速增大,而埋深比增加到一定程度后,其对转动刚度几乎无影响;柱脚转动刚度随钢柱轴压力增加呈增大的趋势;对于浅埋柱脚节点,底板约束对其转动刚度的影响较大,而随着埋深的增大,其影响逐渐减小;底板转动约束对埋深比小于1.5的节点刚度具有显著影响,当埋深比增大至2.5,其影响可以忽略。  相似文献   

11.
深基坑支护对紧邻建筑物变形的分析与监测对比研究   总被引:3,自引:0,他引:3  
将深基坑、支护结构及周边建筑物作为一个体系,运用数值模拟分析方法对紧邻建筑物的沉降变形随基坑开挖深度的变化进行计算模拟,与实际监测数据进行对比分析,其结论不但证明了支护方案的可行性,同时也对深基坑工程的安全施工提供了一定的指导作用。  相似文献   

12.
开挖对周边建筑物基础影响的有限元分析   总被引:5,自引:0,他引:5  
基坑开挖对临近建筑物会产生较大影响,导致临近建筑物基础应力和变形发生变化。采取Plaxis有限元软件分析基坑开挖对临近建筑物基础的影响,选取了不同开挖深度基坑、基坑与建筑物不同间距作为初始条件,模拟基坑开挖的实际过程,讨论基坑开挖对临近建筑物基础的承载力和变形的影响。结果表明,桩基础所受影响程度与基坑深度,距离基坑远近相关,同时受到上部结构的制约,需考虑上部结构与基础的共同作用。  相似文献   

13.
为了研究基坑开挖对周围管道、建筑、道路的影响,2个狭长形地铁车站深基坑不同位置处土体的侧向位移、土体沉降、管道沉降、建筑沉降等资料的监测数据在开挖过程中被记录.通过分析现场监测资料发现,地表沉降与监测点基坑围护结构距离的关系呈三折线模型,管道沉降与土体沉降有一定的相关性,燃气管道、给水管道和污水管道的沉降平均值占地表沉降平均值的比例分别为943%、587%、653%.管道沉降和地表沉降的变化趋势相似且均呈一定的空间效应,随着L/He的增大,土体沉降及管道沉降的平面应变比(PSR)呈先增大后变化缓慢的趋势,刚度较小的燃气管道的三维效应与土体沉降的三维效应变化相似.距离基坑15 m处桥台的最大沉降差发生在距离开挖边缘-5 ~5 m处,差异沉降为088×10-3,桥台最大沉降值发生在靠近基坑中心位置处,最大达2432 mm.随着时间的增长,管道沉降和地表沉降均呈现先增大后保持稳定的趋势,底板完成时,管道沉降和地表沉降占最终沉降的比例分别为85%和80%.  相似文献   

14.
基于某软土地铁站深基坑工程项目,依据勘察与抽水试验数据采用有限元软件Midas GTS建立三维模型,研究渗流-应力耦合作用下基坑降水开挖过程中孔隙水压力及地表沉降变化规律,分析土体渗透系数及降水深度、降水速率等设计参数对地表沉降的影响。研究表明:基坑降水开挖使得地下水渗流路径呈降落漏斗形,基坑底部出现凹弧形等孔压线;地表最大沉降点与基坑的距离约为降水深度的1.0~0.75倍,孔压消散是地表沉降的主要因素;最终降水深度每增加1 m相应地表最大沉降量增加约2 mm,采取回灌措施比未采取引起的基坑周边地表最大沉降小26.2%。  相似文献   

15.
介绍一种特殊的双排桩围护结构,为了了解该围护结构周围的地面沉降,有效地控制该围护结构周围地面的变形,运用有限元法分析该结构基坑的周围地面沉降情况,通过对比说明该双层围护结构的使用起到了降低基坑周围地面沉降的作用. 对该双层结构设计参数进行分析,分析表明,基坑周围地面沉降量随两道围护结构叠加深度和内部围护结构嵌入比的增加而减小,当基坑外超载5~10 kN/m2和20~30 kN/m2时超载影响范围分别为0.5和1倍的开挖深度. 支撑刚度的增加能够有效地降低基坑周围地面沉降量. 分析得到的基坑外侧最大沉降量与内外结构间距大致呈线性关系.  相似文献   

16.
依托杭州沿江大道地下综合管廊深基坑工程,土体采用HSS模型进行有限元数值模拟,分析基坑降水开挖下基坑及邻近管线的变形,模拟结果与监测结果吻合较好,验证了有限元计算模型和参数选取的合理性。基于模拟提出隔断式基坑降水优化方案,并研究稳态渗流下隔水帷幕插入深度不同时基坑及邻近管线的变形响应。结果表明:随着悬挂式隔水帷幕深度加深,坑内外水头差线性增大,围护结构侧移峰值线性增大,管线竖向位移、坑外地表沉降线性减小;相较于悬挂式隔水帷幕,隔断式隔水帷幕对控制基坑降水引起的坑外地表沉降及邻近管线变形均有着显著优势,但对于围护结构变形控制则不利。  相似文献   

17.
以某透水性土层较深的悬挂式止水帷幕基坑为背景,采用ABAQUS建立考虑分级降水开挖全过程的三维流固耦合模型,研究降水对于基坑变形发展的影响规律和不利因素,分析开挖前预降水深度、止水帷幕深度对基坑变形性状的影响. 研究表明:渗流与开挖支护具有明显的耦合效应,降水引起的围护结构侧移增量模式随开挖和支撑施作情况不同而差异较大,降水引起的地表沉降是由土体固结和渗流引起的围护结构侧移引发的地表沉降组成;地表沉降影响范围较经验预测值明显偏大,在基坑西侧地表沉降最大点,降水施工期累积产生的沉降约占48%;各级降水中第1级降水对基坑变形最不利,围护结构初始侧移随第1级降水深度的增加而快速增长,使得竣工后的最大围护结构侧移和坑外地表沉降呈指数增长;止水帷幕对于减少坑外水位下降和控制地表沉降有显著作用,随着帷幕深度的增加,地表最大沉降和沉降影响范围降低,存在最优止水帷幕深度使得帷幕超过最优深度后地表沉降趋于稳定.  相似文献   

18.
Dynamic centrifuge model test was conducted to study the earthquake-induced differential settlement of foundation on cohesive ground, and the influence of asymmetry of building was investigated. During the experiment, the overconsolidated kaolin clay ground with a three-dimensional asymmetrical structure model was shaken by a basically balanced input motion, and bender elements were used to measure shear wave velocities of model ground to reveal the soil fabric evolution during and after shaking. The test results show that, the total seismic settlement of foundation is composed of instantaneous and long-term post-earthquake settlements, and most of the differential settlement occurs immediately after the earthquake while the post-earthquake settlement is relatively uniform despite its large amplitude. The asymmetry of building affects the settlement behavior considerably. Compared with 1-or 2-dimensional structures, more evident differential settlement occurs under three-dimensional asymmetrical building during shaking, which accounts for one-half of the total seismic settlements and results in complex spatial tilting effects of foundation. Supported by the National Basic Research Program of China (“973” Project) (Grant No. 2007CB714203), the China Postdoctoral Science Foundation (Grant Nos. 20080430219, 20081476) and the Foundation for Seismological Researches, China Earthquake Administration (Grant No. 200808022)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号