首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
堰塞坝是由滑坡等失稳地质体快速堆积并阻塞河道而形成的天然坝体,溃决后会对下游人民生命财产安全造成严重威胁。深入开展非均质结构对堰塞坝溃决过程的影响研究,可为堰塞坝灾害的风险评估和应急处置提供重要参考。依托自主研发的水槽试验装置,通过开展不同结构类型堰塞坝的溃决模型试验,分析了均质、竖向非均质和水平非均质结构对坝体溃决的影响。研究发现:1)堰塞坝侵蚀过程受局部区域材料性质影响严重。2)均质坝中,随着中值粒径增大,材料抗侵蚀能力增强,溃决特征先由层状冲刷变为陡坎侵蚀,再变为多级陡坎侵蚀,峰值流量逐渐减小,峰现时间逐渐推迟。3)竖向非均质坝中,坝体上部材料主要影响溃口形成阶段历时和坝前水位;中部材料主要影响溃口发展阶段的溃口下切速率;底部材料主要影响下游坡脚稳定性和残留坝体形态。受溃口加速下切和溃决流量增加彼此间相互叠加影响作用,中部及底部材料分布对峰值流量的影响最为显著。4)水平非均质坝中,坝体内部4个区域对溃口发展的影响不同。过流侧上方材料影响溃决前期的溃口下切速率;过流侧下方、对岸侧上方材料分别影响溃决中后期的溃口下切、展宽速率;对岸侧下方材料对溃口发展影响最小。泄流槽设计时,应考虑非均质结构的影响,基于坝体结构特征采用工程措施限制溃口深切、促进溃口展宽,以降低峰值流量。  相似文献   

2.
堰塞坝溃决物理概化试验是当前研究堰塞坝溃决机理较为可行的方法,但在现有堰塞坝溃决试验中,由于试验坝体尺寸较小、试验上游库容不足,导致试验的溃决过程与实际堰塞坝溃决存在较大差异。为尽量克服库容的不足所带来的影响,本文采用了最大库容达380m3的大尺度堰塞坝溃决试验系统。本文以无粘性、宽级配砂砾料堰塞坝为对象开展了多组室内大尺度溃决试验来揭示堰塞坝溃决机理,并通过设置不同背水面坝坡来研究其对溃决过程的影响。通过试验发现堰塞坝溃决过程可以分为沿程冲刷、溯源冲刷、快速发展和溃口稳定四个阶段。在溃决过程中发现陡坎侵蚀和溃口两侧土体失稳坍塌是溃口快速发展的主要机理。不同背水面坡度下的沿程冲刷阶段冲蚀特征基本相似,而溯源冲刷阶段及快速发展阶段溃决过程差异显著,较大的背水面坡度使溯源冲刷阶段跌坎水流更容易得到发展,进而影响溃口处的垂向冲深及侧向发展,导致快速发展阶段更易形成垂向落差较大的陡坎洪水冲蚀。从溃决历时来看,坡度的增加使溃口发展更快、峰值流量出现时间更早,进而导致溃决历时缩短。坝顶溃口宽度及峰值流量也会随着坡度的增加而增加。在本试验还较好地重现了天然堰塞坝下游河道两岸的淤积现象,并根据堰塞坝溃决过程中的水流特点、泥沙运动及溃决完成后下游河道的地貌,初步分析了淤积区的形成机理。  相似文献   

3.
针对堰塞坝溃口下切过程和不同因素对过程影响的问题,开展室内水槽试验。结果表明:溃口下切过程分3个阶段:Ⅰ为溃口缓慢发展阶段,即水流缓慢溢出溃口阶段,侵蚀速率较小,泥沙输移主要以悬移质运动为主,溃口下切缓慢;Ⅱ为溃口迅速发展阶段,表现为溯源侵蚀强烈,溃口底部变化迅速,推移质运动占主导地位;Ⅲ为稳定河床形成阶段,水流速度和流深减小,水流携沙力减弱,河床形成粗化层,最终达到新的水沙平衡。溃口流量与侵蚀的关系表现为:来水流量的加大增加了相应时刻的溃决流量,增大了侵蚀率,缩短了溃决时间,溃口底部趋于平滑;来水流量的加大提高侵蚀率曲线斜率,使侵蚀率曲线向瘦高型发展;随背水坡坡度的增加,溃决流量增大,侵蚀率增加,坝体残留高度降低。另外,因背水坡坡度增加导致坡面土颗粒稳定性的降低可采用水槽坡度与背水坡坡度之和正切值的3次方这一因子反映。考虑堰塞坝材料性质差异性的溃决过程是下一步研究的重点。  相似文献   

4.
针对堰塞坝溃口下切过程和不同因素对过程影响的问题,开展了室内水槽实验。结果表明:溃口下切过程分3个阶段,Ⅰ为溃口缓慢发展阶段:为水流缓慢溢出溃口阶段,侵蚀速率较小,泥沙输移主要以悬移质运动为主,溃口下切缓慢;Ⅱ为溃口迅速发展阶段:表现为溯源侵蚀强烈,溃口底部变化迅速,推移质运动占主导地位;Ⅲ为稳定河床形成阶段:水流速度和流深减小,水流携沙力减弱,河床形成粗化层,最终达到新的水沙平衡。溃口流量与侵蚀的关系表现为:来水流量的加大增加了相应时刻的溃决流量,增大了侵蚀率,缩短了溃决时间,溃口底部趋于平滑。来水流量的加大提高侵蚀率曲线斜率,使侵蚀率曲线向瘦高型发展。随背水坡坡度的增加,溃决流量增大,侵蚀率增加,坝体残留高度降低。另外,因背水坡坡度增加导致坡面土颗粒稳定性的降低可采用水槽坡度与背水坡坡度之和的正切值的三次方这一因子反应。最后指出,考虑堰塞坝材料性质差异性的溃决过程是下一步研究的重点。  相似文献   

5.
我国是堰塞湖灾害最严重的国家之一,堰塞湖对上游淹没区和下游溃决演进区的人民生命财产安全构成巨大危险,深入掌握堰塞坝冲刷溃决过程可为应急泄流道的设计和下游应急避险措施的制定等提供重要科技依据。本文以2018年金沙江白格滑坡堰塞湖事件为研究背景,采用室内物理模型试验的手段对堰塞坝冲刷溃决过程进行了系统研究。试验结果表明:堰塞坝冲刷溃决过程一般可分为四个阶段:过流孕育阶段、溯源侵蚀阶段、溃坝发展阶段以及河床再平衡阶段,当溯源冲刷的陡坎追溯到上游坡顶,泄流槽进口断面在侵蚀作用下突然拓宽,泄流槽将连通形成底坡i>0的斜坡道,进而导致水流流速和流量突然增大,堰塞坝进入溃决快速发展的阶段。试验进一步探究了泄流槽开挖位置、开挖深度和宽度对溃决过程的影响。研究发现:当泄流槽开挖宽度不变,深度增大时,洪峰流量降低、峰现时间延迟、溃决流量过程线更为平坦;当泄流槽开挖深度不变,随宽度增大峰现时间延迟。最后,对泄流槽的优化设计提出了建议:泄流槽位置宜布置在坝顶高程最低的垭口,以减小洪峰流量,缩短溃决历时;开挖泄流槽时应优先考虑加大泄流槽深度,最大限度地降低溃决时的堰塞湖水位。  相似文献   

6.
堰塞坝泄流冲刷试验研究   总被引:10,自引:2,他引:8  
考虑到堰塞坝不同内坡坡度和不同坝体级配对溃坝过程的影响,设计了11组溃坝试验进行研究,根据对溃坝过程的摄影记录,观测到溃坝过程的四个阶段,其中阶段Ⅲ的坝体侵蚀最为剧烈,阶段Ⅰ内坡被侵蚀,阶段Ⅱ溃口顶部被侵蚀,阶段Ⅲ外坡被侵蚀,阶段Ⅳ坝体形态达到稳定,库区水位逐渐达到恒定值;运用WYG-Ⅱ型水位测量系统,得到整个溃坝过程水库的实时水位数据,试验结果表明:内坡坡度越大,溃坝洪峰流量越大;不均匀系数越大,溃坝洪峰流量由于绕流掀沙现象的存在反而增大,而后随着粗沙越多,细沙隐蔽作用突出,溃坝洪峰流量减小.  相似文献   

7.
水槽试验是研究堰塞坝体溃决机理的有效手段之一,但现有试验研究中合理的设计准则尚不多见,本文通过理论分析和水槽试验对堰塞坝漫顶溃决的试验设计进行了研究。基于总结分析,探讨了影响坝体溃决的因素以及堰塞坝漫顶溃决条件下溃口发展的一般进程。通过分析推导,提出了溃口发展过程中流深d的概念,并建立了用于确定模型试验比尺的指标d0/D。根据这一指标所确立的相似准则,本文设计并完成了模型试验;通过与原型堰塞湖溃决过程的对比,试验结果初步印证了这一指标的合理性。本文成果可以为后续的堰塞坝溃决水槽试验研究提供借鉴和参考。  相似文献   

8.
受持续来流影响,在大江大河内形成的堰塞湖极易在数十天甚至数天内漫顶溢流溃决,引发非常态溃决洪水,严重威胁下游沿岸地区人民群众生命财产安全。堰塞湖溃口坍塌变形发展迅速、现场观测难度大,当前普遍难以实地观测堰塞湖溃口形态变化及水力学参数,至今未能获取溃口坍塌发展的真实数据。针对堰塞湖溃决洪水威胁及溃决机理不明等难题,基于堰塞湖溃决过程现场观察及历史堰塞湖溃决案例分析,阐明堰塞体体型、材料级配、库容及上游来水量是决定堰塞体危险性的关键。并以“11·3”白格堰塞湖为原型,分别开展了堰塞湖溃决1∶80室内和1∶20野外物理模型试验,揭示堰塞体溃口发展遵循“流速驱动、流量控制”,以获得较大流速为目标的自我演化机制;溃口坍塌发展的主要动力机制是携沙水流剪切冲刷、陡坎上游负压区涡流掏刷、陡坎下游高速水流冲刷、边坡重力坍塌;堰塞体溃决坍塌依次呈现尾部下切、陡坎溯源、全断面下切、上冲下淤4个发展阶段变化特征,溃口平面形态相应依次呈现线条型、倒喇叭型、双曲面型、近似等宽型4个变化特征。陡坎溯源是溃决前最高效的冲刷方式,也是判断堰塞体漫顶过流后是否溃决的重要标志。开展堰塞湖溢流溃决大型物理模拟试验有助于推动高危堰塞湖应急疏通排水设计和堰塞体坍塌控溃技术发展,为堰塞湖应急处置提供参考。  相似文献   

9.
青藏高原区域滑坡-泥石流-堰塞湖灾害频繁发生,灾害损失巨大,与之相关的科学研究一直是国内外研究的热点和难点。我国在堰塞湖减灾领域已经积累了丰富的实践经验,但是冰碛土滑坡-泥石流-堰塞湖灾害演化过程非常复杂,涉及众多的物理力学机制和学科理论,复杂气象条件下冰碛土滑坡-泥石流-堰塞湖的动力形成机制、溃决冲刷及洪水演进灾害链的全过程演化分析与数值模拟方面尚需进一步研究。揭示冰碛土滑坡-泥石流-堰塞坝的链生放大机制和冰碛土堰塞湖溃决演进的动力灾变机理是实现冰碛土滑坡-泥石流-堰塞湖灾害有效防控的关键,结合国内外冰碛土滑坡-泥石流-堰塞湖形成与溃决的相关研究现状,提出了冰碛土滑坡-泥石流-堰塞湖灾害需要关注的几个重要研究方面:(1) 复杂气象条件下冰碛土力学性能演化;(2) 冰碛土滑坡-泥石流动力灾变过程与运移模型;(3) 冰碛土滑坡-泥石流-堰塞湖形成机理与仿真模拟;(4) 冰碛土堰塞坝冲刷溃决机理与流道拓展过程;(5) 下游河道水沙互馈作用机制与洪水演进模拟。并开展了大量前期探索和研究工作,初步揭示了冰碛土滑坡-泥石流运移与多期堵江机制,构建了能考虑水流侵蚀与溃口边坡间歇性崩塌的堰塞坝溃决演化模型,并探讨了冰碛土-滑坡-泥石流-堰塞坝灾害链演化过程模拟方法。研究结果为进一步弄清冰碛土滑坡-泥石流-堰塞湖灾害链过程的复杂动力学机制、构建灾害链过程的控制性理论模型、开发全过程数值模拟系统奠定了基础,以期为冰碛土滑坡-泥石流-堰塞湖灾害链的成灾机理分析提供理论依据及为非工程避险与应急处置决策提供技术支撑。  相似文献   

10.
为评估堰塞坝安全,需要分析其受水力驱动溃滑导致的溃决变化过程。传统的分析方法或没有运用极限平衡法,或认为溃滑过程中其滑裂面倾斜角度不变,或没有考虑孔隙水压力。实际中,堰塞坝水力驱动溃滑过程是一个需要由极限平衡理论解决的问题。通过采用岩土工程中圆弧形式的边坡稳定分析方法,考虑孔隙水压力影响,运用总应力法和有效应力法模拟堰塞坝不断溃滑的过程(包含溃口横向的不断扩展过程及其垂直下切过程);开发DBS–IWHR的电子表格分析堰塞坝溃滑过程,该电子表格已被耦合到溃决洪水分析电子表格DB–IWHR,用于分析其受水动力驱动溃滑导致的溃决洪水变化过程。结果表明:1)DBS–IWHR提出确定堰塞坝水力驱动溃滑过程的模拟步骤:确定特定圆弧滑面的安全系数FS;在各种可能的滑裂面中,确定与最小安全系数Fm相关的临界滑裂面;确定与Fm=1相关的坡脚失稳的临界深度;连续溃滑过程的模拟。以上过程只需手动4步即可进行溃滑过程模拟,基于VBA编制的程序具有良好的交互性,利于读者和使用者进行矫正和二次开发。2)选取唐家山案例,分析了水动力驱动溃滑过程及溃决洪峰流量过程,其洪峰为6 500 m~3/s,溃口宽度为150 m;预测的溃决洪峰流量为7 610 m~3/s,溃口宽度为139.6 m。预测值与实测值的误差在允许范围内,验证了改进的水力驱动溃滑过程模拟方法的可靠性。  相似文献   

11.
水库大坝的溃决对下游人民生命及财产带来巨大威胁,而中国已溃大坝中有85%以上为均质黏性土坝,且50%以上为漫顶溃决,因此有必要深入研究均质黏性土坝的漫顶溃决机理,提高溃坝洪水流量过程的预测精度,为溃坝应急抢险提供理论与技术支撑。基于均质黏性土坝大尺度漫顶溃决模型试验,揭示了漫顶水流作用下溃口在3维空间的发展机理,在此基础上提出了一个模拟均质黏性土坝漫顶溃决过程的数学模型。该模型基于坝体形状和漫顶水流特征确定"陡坎"的形成位置,采用宽顶堰公式计算溃口流量;选择可考虑坝料物理力学特性的溯源冲刷公式模拟"陡坎"的移动,并通过力学分析判断"陡坎"上游坝体的坍塌;引入坝料冲蚀系数,通过分析水流剪应力与坝料临界剪应力建立坝料的冲蚀率方程,模拟坝顶与下游坡溃口的发展;采用极限平衡法模拟溃口边坡的失稳,并假设滑动面为平面。模型考虑了不完全溃坝与坝基冲蚀,以及坝体的单侧与两侧冲蚀。选择国内外3组具有实测资料的大尺度均质黏性土坝漫顶溃坝模型试验对模型进行验证,实测值与计算结果的比较表明,溃口峰值流量、溃口最终平均宽度及溃口峰值流量出现时间的相对误差均在±25%以内,并且计算获得的溃口流量过程线与实测结果基本吻合,验证了模型的合理性。  相似文献   

12.
崩滑型堰塞坝是由地震、降雨、火山喷发等自然因素诱发的崩塌、滑坡堵塞河道所形成的天然土石坝,其在世界范围内广泛分布。崩滑型堰塞坝的形成与溃决具有高突发性、突溃性和强致灾性,会严重威胁所在流域的人民生命财产安全。因此,快速开展堰塞坝危险性评估,对应急抢险救灾具有重要的现实意义。目前对堰塞坝危险性快速评估的研究主要集中在成坝可能性、稳定性、寿命和溃决洪水等四个方面。本文总结了堰塞坝成坝影响因素和成坝快速判别公式,系统阐述了堰塞坝稳定性和寿命的定义、影响因素及快速评估模型,详细归纳分析了堰塞坝溃决模式、溃坝影响因素及坝址与下游河道的洪水快速预测模型。研究表明堰塞坝的形成主要受地形条件,固体物源条件和水源条件的影响;其稳定性、寿命和溃决主要受坝体几何形态,坝体材料、结构和水文特征等方面的影响。根据影响因素所建立的评估模型在一定程度上可以快速估算堰塞坝的稳定性、寿命、溃决流量等参数,但由于信息获取不便等问题,评估结果仍然存在一定的不确定性。在此基础上,本文提出了需要进一步研究的方向:(1) 考虑不同外因(地震、降雨等)条件下滑坡、崩塌启动及运移过程大型模型试验,建立考虑关键影响因素和水土物质相互作用的成坝快速判别模型;(2) 基于物探等手段开展堰塞坝坝体材料和结构参数的快速获取研究;(3) 建立考虑能量转换与耗散的溃坝程度快速评估模型,分析残余坝体致灾危险性;(4) 构建流域堰塞坝溃决洪水演进及水库调蓄减灾分析模型,指导流域水量调度及流域范围内工程建设;(5)开展堰塞坝灾害链对全流域影响的快速动态风险评估,为堰塞坝灾害预测及应急处置提供重要参考依据。  相似文献   

13.
堰塞坝是由崩塌、滑坡、泥石流等斜坡失稳体堵塞河流而形成的天然坝体。我国是堰塞坝的高发区,在作者统计的全世界范围内堰塞坝案例中,发生在我国的高达758例,占比59%。近年来,频发的地质构造活动和极端气候灾害(台风、暴雨、融雪等)诱发了大量的堰塞坝,严重威胁所在流域的生命财产安全。崩滑碎屑体堵江形成的堰塞坝通常结构松散、稳定性差、溃决程度大、溃决速度快,容易形成巨型洪灾,对下游生命财产造成更大危害。首先简要总结了一般堰塞坝堵江研究,阐明了崩滑型堰塞坝成坝特点。然后分析崩滑碎屑体运动及破碎机理和碎屑体堵江成坝机理研究,明确了颗粒破碎和水流条件对坝体形态特征、物质组成和稳定性的作用。崩滑碎屑体堵江通常有3种成坝模式:滑入型、爬高型和折返型,不同类型堰塞坝的稳定性具有显著差异。堰塞坝的稳定性与坝体关键特征参数(几何形态、坝体结构和物质组成)密切相关,而坝体特征参数又主要由崩滑体在运移过程中碰撞破碎和入河堵江时的固液耦合作用共同决定。考虑上述两种因素,结合物源性质、边坡地形、河谷及水流条件,本文提出了成坝影响因素与堰塞坝的空间形态、结构特征及稳定性的内在关系的研究思路,以便建立基于坝体稳定性快速评价的坝体特征预测模型。本研究的开展可为堰塞坝形成前坝体特征的事先预测以及堰塞坝形成后坝体稳定性的快速评估等方面的研究与实践提供重要理论依据。  相似文献   

14.
堰塞体一般在自然力作用下瞬间形成,堆积体具有空间结构复杂、坝料级配宽泛、稳定性差、易在水流冲刷下发生溃决等特点。堰塞体作为一种重大的水旱自然灾害,其安全评价和灾害预测是国内外学者关注的焦点,目前尚有很多问题需要解决,包括:(1)堆积体由天然宽级配土石料构成,表现出显著的状态相关性,缺乏正确描述这种宽级配堆石料的状态相关剪胀理论与本构模型;(2)堰塞体形成后,会受上游堰塞湖水位抬升、持续非稳定渗流、湖区滑坡涌浪、后期地震等外荷载作用的影响,缺乏稳定性评判的标准和方法;(3)堰塞体缺乏必要的洪水溢流设施,容易发生溃决,且溃决水流冲蚀过程呈明显的非线性特点,溃口水力要素指标呈强非恒定流特征,缺乏反映宽级配堰塞体材料冲蚀机理的溃决过程数学模型。为此,有必要采取现场勘查、多尺度物理模型试验、数值仿真等综合手段开展研究,揭示堰塞体外观形态、内部结构和材料宏观力学特性及其时空变异规律,提出状态相关(级配、孔隙比、应力水平)的宽级配堰塞体材料剪胀方程,建立能适应复杂应力路径的广义弹塑性本构模型与坝体极限平衡分析方法;开展大型水工模型试验和溃坝离心模型试验研究,揭示非恒定流作用下堰塞体材料的动态冲蚀特性与堰塞体溃口演化规律,建立非恒定流作用时溃口动边界条件下的挟砂水流冲蚀方程,提出考虑流固耦合的堰塞体溃决过程数学模型,实现堰塞体漫顶或渗透破坏溃坝全过程水流运动特征、坝料输移规律、溃口演化过程及结构失稳的数值模拟。综合可靠度理论与溃坝过程数值模拟方法,提出能考虑流固耦合的堰塞体渗流、变形、稳定和溃决过程的一体化数值仿真平台,构建堰塞体全生命周期安全评价与灾变模拟理论体系与方法,为提升我国堰塞体防灾减灾决策水平提供科学的理论与技术支撑。  相似文献   

15.
为了预测滑坡泥石流坝溃决产生的洪峰流量和最大水深,本文的目标是建立滑坡泥石流坝在自然条件下首次溃决形式的经验公式模型,包括平均宽度bc和残留高Hd两个溃口形式的特征参数,从而为制订防灾减灾方案或应急预案提供科学依据。通过野外考察采集的数据以及溃决特征分析,选取影响滑坡泥石流坝溃口形式的主要因子,分别建立了坝高H、有效坝长B、堰塞湖库容W、坝体鞍部单宽体积V、内摩擦系数tan 以及上限粒径d90共6个因子与溃口形式(即溃口的平均宽度bc和残留高Hd)之间的经验关系公式。最后,将经验预测公式运用到实例进行检验,误差较小。  相似文献   

16.
进行了均质土石坝漫顶破坏水槽试验,试验中观测到3种漫顶破坏模式:陡坎蚀退冲刷溃决模式、剪切蚀退坍塌溃决模式和浸泡剥蚀破坏模式,不同破坏模式溃口形成和发展阶段坝体破坏类型差异较大.坝高、筑坝材料、漫顶流量和坝顶抗侵蚀能力非均匀分布等因素影响坝体破坏方式,如坝顶非均匀冲刷产生的束水作用造成的"凹形"蚀退、其他条件相同情况下筑坝材料强弱导致的剪切或陡坎蚀退和坝高大小导致的陡坎蚀退或浸泡剥蚀等.这些因素通过影响不同位置侵蚀速率,共同决定了漫顶破坏模式,而后者对漫顶破坏过程和溃坝参数(破坏持续时间、最大下泄流量等)影响较大.  相似文献   

17.
2018年10月10日和11月3日,西藏自治区江达县波罗乡白格村金沙江右岸同一位置先后两次发生滑坡堵江事件并形成了巨大的堰塞湖,其堰塞坝在自然泄流和人工开挖泄流槽两种处置方式后溃决。其中,第二次滑坡堰塞坝的溃决洪水给下游西藏、四川和云南3省(自治区)受灾范围内的道路、桥梁、耕地和房屋造成了巨大破坏。为了应对类似的极端、超常规、特大堰塞坝溃决洪水威胁以及相关的基础性研究需要,课题组于2018年12月21日至29日对这次金沙江白格堰塞湖溃坝洪水对下游的受灾情况进行了考察调研。考察以受灾最为严重的巴塘县巴楚河(又称巴曲河)与金沙江的交汇口为起点,直至洪水威胁基本消除的梨园水库库区为终点沿江共计488.6km的受灾河段为主。考察重点为沿岸房屋、道路、桥梁和水利基础设施等受损情况,并对溃坝洪水的最大淹没水位(洪痕)、考察时的河道水位,河道两岸堆积的泥沙及其颗粒级配,桥梁致灾水位等进行了分析,得到了一些有价值的灾情数据与成果,这些成果可为进一步的基础性研究提供一定的数据支撑。  相似文献   

18.
堰塞湖冲刷及溃决试验研究   总被引:6,自引:1,他引:5  
地震引发地震堰塞湖,对下游居民的生命安全造成很大威胁。通过建立一套以高速摄影为主,辅以桩群定位的模型试验方法,研究了堰塞湖从沿程冲刷到溯源冲刷的全过程,观测了溃决的水流和形态变化。观测发现溃口的变化是一个逐步渐变,底部为溯源冲刷,两边逐渐溃塌的过程。漫顶冲刷条件下,堰塞体呈现出全断面的溯源冲刷。随时间的推移,冲刷系数存在由大变小的规律,从空间上存在从上游往下游变小的规律。堰塞体模型的溃口不断扩大,冲积扇形状逐渐变大,向两边和上游延伸,最终形成一个上游窄下游宽、不规则的梯形冲刷沟,此结果可为堰塞湖排险、溃坝洪水研究等参考。  相似文献   

19.
震区重力侵蚀及其产沙输沙效应造成严重的水土流失、河道淤积和城镇损毁,极大地改变了灾区生态环境并严重威胁灾后恢复重建和重大工程安全,是目前国内外研究的热点问题。以汶川地震震中牛圈沟流域为研究区,在崩塌、滑坡、泥石流等重力侵蚀区布设野外监测网,选择流域中下游的典型部位,采用GPS、全站仪、3D激光扫描系统和GIS等现代测绘技术,进行不同水土条件下的坡面、断面、沟道和地表形变监测,分析泥石流等重力侵蚀的发育特征、产沙输沙效应和致灾能力。研究结果表明:1)泥石流具有大冲大淤特征,在流域中下游一场泥石流最大冲刷和淤积深度分别达6.84和4.77 m;2)在沟道上部,泥石流表现为冲刷特征,其中最大冲刷6.84 m;3)在沟道中部,前期泥石流会产生弯道超高现象,凹岸比凸岸平均高出2.2 m,在后期泥石流表现出大规模冲刷作用,最大冲刷深度3.77 m;4)在沟道下部,前期泥石流表现为堆积特征,平均堆积厚度达1.65 m,后期泥石流表现冲刷作用,河床向一侧迁移,并形成倾斜河床;5)重力侵蚀具有强烈的产沙输沙效应,一场泥石流的平均产沙输沙量和堆积厚度可达到15.2×104m3和1.44 m、最大输沙量和冲刷深度分别可达16.2×104m3和1.53 m。研究结果可以为灾区重大工程选址选线、河流整治和次生山地灾害防治工程设计提供依据和参考,对保障山区公共与生态安全具有重要意义。  相似文献   

20.
堰塞体具有物质组成复杂,结构不均一的特点,给传统物探方法应用带来局限性.目前国内外有关堰塞体的研究资料极少,为研究清楚堰塞体物质结构组成,指导堰塞坝病险情处置,笔者在堰塞体上进行了相关实验.由于常规电法及地震法不适宜开展,而天然源面波法具有场地适应性强,勘探深度大,探测结果分辨率高的特点.本文选用天然源面波的方法,通过...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号