首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
为解决传统K-means算法初始质心的随机选取以及聚类过程中每个数据样本到聚类中心距离的重复计算问题,提出了一种高效的基于初始聚类中心优化的K-means算法,采用最小方差优化初始质心,通过存储每次迭代中所有数据点的簇标志和到最近聚类中心的距离并用于下一次迭代,避免了重复计算数据点到每个中心的距离。在UCI数据库中五个不同的数据集上进行了测试,对各个算法在聚类准则函数,运行时间以及迭代次数上进行实验结果比较,表明在不降低聚类性能的前提下,减少了迭代次数,缩短了聚类时间,证明了改进算法的有效性和高效性。  相似文献   

2.
针对传统K-means 算法初始中心选取的随机性导致算法聚类效果不佳的问题, 提出一种基于网格密度距离的K-means 算法, 即GDD-K-means。该算法先把数据点放入网格空间内, 以网格为单元进行数据处理, 遍历网格得到网格密度, 根据密度阈值筛选出高密度网格并进行降序排序; 再在高密度网格中引入K-means++思想, 选取k 个距离较远的网格点; 最后进行K-means 算法聚类的k 个初始中心点将确定在上述网格点中。仿真实验结果表明, GDD-K-means 算法减少了聚类中心选取的随机性, 改善了聚类的效果。  相似文献   

3.
提出了一种有效选择初始聚类中心的算法CNICC.该算法参考了网格聚类算法的思路.划分数据空间为相应维度上的网格单元,然后根据实例的分布情况确定初始聚类中心.从二阶差分的概念出发,CNICC定义了网格单元的一阶邻居和二阶邻居,算法根据每个网格单元的一阶和二阶邻居的局部密度变化寻找包含聚类中心的网格单元.在人工数据集上进行的实验表明,与现有初始化聚类中心的方法相比,CNICC能够有效减少K-means算法的迭代次数,提升聚类精度.同时,随着数据集实例数、维度和网格单元数量的增加,算法的时间复杂度呈线性增加.  相似文献   

4.
传统的K-means算法是一种常用的聚类算法,但它对于初始聚类中心敏感,容易受到"噪声"和孤立点的影响,由此提出了一种基于网格的二次K-means聚类算法.此算法先将空间划分为多个大小相等的网格,然后根据给定的密度阈值来计算出密集网格,对密集网格中的点进行初次聚类,将初次聚类结果的均值点作为第二次聚类的初始均值点,从而消除了"噪声"和孤立点的影响,并且保证了信息的完整,实验证明此算法是有效的.  相似文献   

5.
提出了一种基于网格密度的混合聚类算法。该算法使用平方误差密度函数作为密度评估标准,避免了传统密度算法由于Eps和MinPts设置不当给聚类效果带来的不稳定因素。提出了动态邻域半径策略,解决了传统密度算法采用全局静态邻域半径造成的聚类偏差问题。对空间区域内的所有结点设置网格密度启发信息。在进行数据结构构造和邻域半径计算时,只需计算对应网格区域内结点,从而降低了计算成本;在进行区域查询时,只选择符合条件的代表对象进行扩展,从而减少了查询次数,节省了程序运行时间。对Pendigits数据集和SE-QUOIA 2000数据库进行测试,结果表明:提出的基于网格密度的混合快速聚类算法在海量数据聚类精度、聚类时间以及聚类稳定性上要优于传统的聚类算法。  相似文献   

6.
一种混合聚类算法及其应用   总被引:1,自引:0,他引:1  
通过分析基于网格与基于密度的聚类算法特征,提出了一种基于网格和密度的混合聚类算法,通过分阶段聚类并选取代表单元中的种子对象来扩展类, 从而减少区域查询次数,实现快速聚类。该算法保持了基于密度的聚类算法可以发现任意形状的聚类和对噪声数据不敏感的优点,同时保持了基于网格的聚类算法的高效性,适合对大规模数据的挖掘。实验数据分析验证了算法的有效性,对数据挖掘应用于设备状态监测和故障诊断具有指导意义。  相似文献   

7.
针对海量实时数据流,提出了一种基于密度和网格划分相结合的聚类算法.首先对数据空间进行划分,判断每个单元格中数据点的属性.如果单元格内数据点密度高于阈值,则判定这些点为核心点;否则,根据单元格邻居内数据点的数量对数据点进行再次判断,以确定单元格内的数据点是边界点还是噪声点.算法克服了基于密度的算法运行效率低的缺点,又弥补了基于网格的算法精度较低的不足.通过实验验证了算法的效率和性能,并与经典的DBSCAN和CLIQUE算法进行了对比分析.最后分析了算法在面向海量实时数据流方面所具有的优势,并提出了进一步的研究方向.  相似文献   

8.
一种基于双重距离尺度的高维索引结构   总被引:1,自引:0,他引:1  
为了提高高维数据相似查询的效率,提出一种基于双重距离尺度(DDM)的新型高维索引结构.通过建模得到该DDM的四元组数据结构, 对于高维空间中的数据点,通过k平均聚类算法将数据点聚成若干类,分别计算每个点对应的始点和质心距离,得到基于加权的质心距离, 并将加权的质心距离作为每个数据点的索引键值,且用基于分片的B+树建立索引,得到了该索引的创建算法.高维空间的查询就转变成对一维空间的检索,并研究了数据点的维数、数据量和查询请求参数对查询性能的影响.结果表明, 该DDM能更有效地缩小搜索空间,减少距离计算的开销,特别适合海量高维数据的查询.  相似文献   

9.
基于形状相似距离的K-means聚类算法   总被引:1,自引:0,他引:1  
把向量作为空间中的物体展开相似度的评估,分析了向量间各维差值与形状差异的间的近似关系,提出了基于形状相似距离的K-means算法。在三个UCI(University of California,Irvine)标准数据集上的聚类结果表明,对于有关形状信息的数据,基于形状相似距离的K-means算法比采用传统距离的K-means算法,聚类准确度显著提高。  相似文献   

10.
针对DBSCAN算法聚类时时间复杂度较高、当边界点同时属于多个类时其聚类准确率较低的问题,在网格查询思想和OPTICS算法的基础上,提出一种改进的DBSCAN算法(GO-DBSCAN算法)。进行聚类操作前,为降低聚类的时间复杂度,先基于网格查询的思想将数据集划分成不同的网格,在进行项目邻域查询时,只须遍历项目附近网格数据而不必遍历整个数据集; 在进行项目聚类时,主要考虑该项目与其附近核心项目的最小可达距离,因此,将OPTICS算法中的最小可达距离引入到DBSCAN算法中,以提高算法对边界点处理的准确度。仿真实验结果表明,GO-DBSCAN在边界点处理的准确率和运行效率方面较DBSCAN都有所提高。  相似文献   

11.
K-均值(K-means)聚类算法是学术与工业领域的经典算法。然而,它却具有两个明显缺陷:1) 需要预先知道聚类的数量;2) 对算法的随机初始化非常敏感。为了解决这两个问题,首先归纳了K-均值算法的基本步骤,并对聚类有效性进行了分析;然后以数据样本点的欧几里德距离为基础,定义了以聚类数量k为自变量的类间质心距离之和以及类内距离之和,由此构造了聚类有效性评价函数;最后根据经验规则,在聚类数量的可能范围内通过求解聚类有效性评价函数的最小值以确定数据集的最优聚类数量。对UCI的3个数据集Iris、Seeds和Wine的仿真结果说明,提出的聚类有效性评价函数不仅能够准确地反映数据的真实聚类结构,还能有效地抑制算法对随机初始化的敏感性,通过对K-均值算法的多次运行,其结果也验证了聚类有效性评价函数的鲁棒性。  相似文献   

12.
针对K均值聚类算法对类簇数目预先不可知及无法处理非凸形分布数据集的缺陷, 提出基于进化思想的聚类算法及其类簇融合算法, 该算法将K均值聚类算法嵌入进化聚类算法框架中, 通过调整距离倍参, 将数据逐渐划分, 在此过程中自动确定类簇数目, 提出基于最近距离的中间圆密度簇融合算法和基于代表类的中间圆密度簇融合算法, 将相似度大的类簇进行融合, 使得k值逐渐趋向真实值. 实验表明, 该方法具有良好的实用性.  相似文献   

13.
提出了一种改进的基于粒子群优化的快速K均值算法,有效克服了K均值算法对初始聚类中心敏感和容易陷入局部最优从而影响聚类效果等缺点.与已有的粒子群优化聚类算法相比,该算法通过对样本各维属性进行规范化,预先计算样本的相异度矩阵,提出了一种简化的粒子的编码规则,基于相异度矩阵进行粒子群优化K均值聚类,在保证聚类效果的基础上,有效降低了计算的复杂度.在多个UCI数据集上的实验结果表明,该算法是有效的。  相似文献   

14.
在各种聚类算法中,基于目标函数的K-均值聚类算法应用最为广泛,然而,K-均值算法对初始聚类中心特别敏感,聚类结果易收敛于局部最优。为此,提出基于加权处罚的K-均值优化算法。每次迭代过程中,根据簇的平均误差的大小为簇分配权值,构造加权准则函数,把样本分给加权距离最小的簇中。限制簇集中出现平均误差较大的簇,提高聚类准确率。实验结果表明,该算法与K-均值算法、优化初始聚类中心的K-均值算法相比,在含有噪音的数据集中,表现出更好的抗噪性能,聚类效果更好。  相似文献   

15.
针对K-means异常检测算法检测性能低的问题,提出了一种结合信息熵与改进K-means算法的异常检测算法。该算法均匀地选出密度大于数据集平均密度的数据对象作为初始聚类中心,避免了初始中心的随机选择。在此基础上,引入了信息熵确定属性权重的方法来计算簇中数据点与该簇聚类中心的加权欧氏距离,通过对比簇中数据点的加权欧氏距离与该簇中所有数据点的平均加权欧氏距离来进行异常检测。实验表明,改进算法具有更高的检测率和更低的误检率,应用于电力负荷数据时检测率达到了90. 5%,能够有效地检测出异常的负荷数据。  相似文献   

16.
数据挖掘技术中聚类算法的改进研究   总被引:1,自引:0,他引:1  
针对K-means算法所存在的问题进行了深入的研究,提出了基于密度和聚类对象方向的改进算法(KADD算法).该算法采取聚类对象分布密度方法来确定初始聚类中心,然后根据对象的聚类方向来发现任意形状的簇.理论分析与实验结果表明,改进算法在不改变时间、空间复杂度的情况下能取得更好的聚类结果.  相似文献   

17.
电信业务每天都产生大量数据,如何从这些数据中提取有用的信息是当今数据挖掘的难题之一。针对实际应用中存在聚类簇数难以确定、单趟聚类算法有时不能收敛到用户指定的簇数等问题,提出了可调多趟聚类挖掘方法。第1趟通过引入一个较大的K值,采用K-means聚类算法,获得K个簇,为第2趟聚类的簇数及簇中心初始值选择提供参考。经电信现网业务数据实验,本文的方法既改善了原聚类方法的局部收敛性,又能较好地适应用户的不同数据分析需求,该方法可用于不确定簇数的大数据分析中。  相似文献   

18.
According to the characteristics of sonar image data with manifold feature, the sonar image detection method based on two-phase manifold partner clustering algorithm is proposed. Firstly, K-means block clustering based on euclidean distance is proposed to reduce the data set. Mean value, standard deviation, and gray minimum value are considered as three features based on the relatinship between clustering model and data structure. Then K-means clustering algorithm based on manifold distance is utilized clustering again on the reduced data set to improve the detection efficiency. In K-means clustering algorithm based on manifold distance, line segment length on the manifold is analyzed, and a new power function line segment length is proposed to decrease the computational complexity. In order to quickly calculate the manifold distance, new all-source shortest path as the pretreatment of efficient algorithm is proposed. Based on this, the spatial feature of the image block is added in the three features to get the final precise partner clustering algorithm. The comparison with the other typical clustering algorithms demonstrates that the proposed algorithm gets good detection result. And it has better adaptability by experiments of the different real sonar images.  相似文献   

19.
针对文本数据的高维性和稀疏性从而使传统的聚类算法在文本聚类应用中的表现不能让人满意的问题,通过计算文档相似度矩阵,在聚类过程中动态地统计学习已划分和未划分文本集合的相关信息,探测剩余未划分的数据集中的与已划分类簇覆盖度较小的最大密集区域,逐步生成预定数目的初始聚类中心集合,最后将剩余文档划分到最相似的初始聚类中心集合完成聚类,从而有效地减小了划分聚类算法对初始聚类中心的敏感性。算法中的一些阈值参数均通过在聚类过程中动态地对数据集进行统计学习得到,避免了多数聚类算法通过经验或实验设定阈值参数的盲目性,在不同  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号