首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
涂春鸣  耿华 《电源学报》2016,14(2):01-04
微电网是分布式新能源发电灵活有效接入和提高电网供电可靠性的重要方式,不仅可消纳高渗透率的新能源发电,提高能源利用效率,还可改善电力品质,增强电力系统的稳定性。近年来,交流微电网、直流微电网和交直流混合微电网的相关基础理论和关键技术发展迅猛,日益成为电力电子学科的研究热点之一。为了集中展现微电网系统架构、稳定性与优化运行、变换器拓扑与控制、电能质量与能量管理等方面的最新研究成果和进展,《电源学报》特别推出“交直流微电网电能变换与控制”专辑。  相似文献   

2.
<正>微电网是分布式新能源发电灵活有效接入和提高电网供电可靠性的重要方式,不仅可消纳高渗透率的新能源发电,提高能源利用效率,还可改善电力品质,增强电力系统的稳定性。近年来,交流微电网、直流微电网和交直流混合微电网的相关基础理论和关键技术发展迅猛,日益成为电力电子学科的研究热点之一。为了集中展现微电网系统架构、稳定性与优化运行、变换器拓扑与控制、电能质量与能量管理等方面的最新研究成果和进展,《电源学报》特别推出"交直流微电网电能变换与控制"专辑。一、征文范围  相似文献   

3.
<正>微电网是分布式新能源发电灵活有效接入和提高电网供电可靠性的重要方式,不仅可消纳高渗透率的新能源发电,提高能源利用效率,还可改善电力品质,增强电力系统的稳定性。近年来,交流微电网、直流微电网和交直流混合微电网的相关基础理论和关键技术发展迅猛,日益成为电力电子学科的研究热点之一。为了集中展现微电网系统架构、稳定性与优化运行、变换器拓扑与控制、电能质量与能量管理等方面的最新研究成  相似文献   

4.
正微电网是实现分布式新能源发电灵活高效接入、提高供电质量和可靠性的重要方式。近年来,交流微电网、直流微电网和交直流混合微电网的相关基础理论和关键技术发展迅速,已成为电力电子学科的研究热点之一。为集中展现微电网系统架构、稳定与优化运行、变换器拓扑与能量控制、电能质量与能量管理等方面的最新研究成果和进展,电源学报特别推出"交直流微电网电能变换与控制"专辑。本专辑征文得到了国内各高校和企业同行的大力支持和积极响应,共收  相似文献   

5.
为了实现分布式电源接入及对电能进行有效管理,将具备高度灵活的功率控制及信息交互功能的能量路由器应用于低压配电网,使得源-网-荷-储能够一体化低碳运行,从而提升负荷调节能力与新能源消纳水平,保障电力系统稳定运行。因此,设计了一种面向低压配电网应用的户用型能量路由器,根据各端口应用对象特性,对其拓扑结构及功率协调控制策略进行研究,为电能生产和消费提供可靠的能源管理策略。最后,通过仿真验证的方法,建立MATLAB/Simulink仿真模型对其功率协调控制策略进行仿真验证。仿真结果表明:所提出的多端口能量路由器功率协调控制策略能够实现多种运行模式下不同端口之间的功率互济和系统功率平衡控制,在能源管理方面具有较高的灵活性、稳定性和可靠性。  相似文献   

6.
微电网是实现大规模分布式电源接入配电网的重要技术途径和手段,其中交直流混合微电网综合了交流微电网和直流微电网各自的优势,已经成为微电网技术发展的重要方向。以国家863项目示范工程"交直流混联微电网上虞示范站"为背景,从拓扑结构设计、关键研发设备和分层控制架构等方面介绍其主要技术特征。重点阐述了该交直流混合微电网的协调控制策略,包括四种运行模式和八种模式切换流程,并结合实际运行结果进行验证。运行实践表明,示范工程能够显著提高负荷的供电可靠性,促进高比例分布式电源就地消纳,对未来交直流混合微电网技术的发展具有一定指导意义。  相似文献   

7.
兰征  刁伟业  涂春鸣  肖凡  郭祺 《电网技术》2022,46(1):156-164
孤岛微电网可就地消纳清洁能源,实现一定范围内的零碳电力供应。但由于孤岛微电网没有大电网的支撑,高比例分布式能源由电力电子变流器接入又导致其缺乏惯性,运行时难以同时实现频率稳定、供电可靠和新能源高效消纳。针对含储能和氢燃料电池的孤岛微电网,结合主从运行模式与对等运行模式的优点,提出一种基于组网型电源协调控制的混合运行模式。储能和氢燃料电池控制为组网型电源,分别采用恒压恒频控制和虚拟同步机控制,其他清洁能源作为随网型电源采用恒功率控制。功率协调算法中将储能荷电状态作为氢燃料电池的功率调节参考,并引入功率微分项改善动态调节性能,实现储能与氢燃料电池的弱通信协调运行。MATLAB/Simulink仿真结果表明,所提方法可以兼顾孤岛微电网的频率稳定性,运行可靠性和新能源利用率,证明了混合运行模式与功率协调策略的正确性和有效性。  相似文献   

8.
交直流混合微电网是未来配用电系统的重要组成形式,对高密度分布式可再生能源的接入与消纳、直流负荷的高效直接供电,以及电力系统的高可靠性运行具有重要意义。相比于传统的交流微电网,交直流混合微电网拓扑结构更加灵活,运行模式多样,交/直流功率可以协调互动,但同时也对其稳定运行控制提出了诸多挑战。文章首先介绍了一种典型的分段式交直流混合微电网网架结构并依据此结构提出了交直流混合微电网并网、直流分段、交流分段、孤岛4种运行模式;然后提出适用于4种模式稳定运行及模式之间无缝切换的交直流混合微电网多模式协调下垂控制策略;最后,通过RT-LAB/MGCC半实物仿真验证了所提算法的正确性与有效性。  相似文献   

9.
低压微电网三相逆变器功率耦合下垂控制策略   总被引:2,自引:0,他引:2  
常规下垂控制对线路阻感比具有高度依赖性,难以对线路阻抗常呈阻性或阻感性的低压微电网的电能质量实现有效控制。基于通用下垂控制原理,提出了改进型PQ-fU功率耦合下垂控制方法,并通过结合上层能量优化管理与引入比例复数积分(PCI)电压控制技术,设计了一种改进型PQ-fU多环控制策略。该控制策略不仅在线路呈阻感特性情况下仍能实现对低压微电网电能质量灵活而有效的控制,而且适用于并网/孤岛2种运行模式,可对上层能量管理系统给定的参考指令进行快速跟踪,实现各分布式电源输出功率的合理分配。在MATLAB/Simulink中对低压微电网逆变器并联运行系统的控制效果进行了对比研究,结果验证了所提控制策略的有效性和优越性。  相似文献   

10.
随着传统能源的日益短缺和环境问题的日趋严重,分布式电源接入是电网发展的必然趋势。微电网是促进分布式能源消纳与管理的有效模式,而交直流混合微电网因其兼备交流微电网与直流微电网的优点,已成为研究热点。该文综合国内外交直流混合微电网的已有研究成果和相关内容,从交直流混合微电网的拓扑结构与容量配置、性能评估、电源管理与保护技术等方面进行总结概括,并对交直流混合微电网的发展前景和实际应用的相关问题做出展望,对国内交直流混合微电网的进一步发展提供相关思路,具备现实意义。  相似文献   

11.
对于多母线结构的交直流混合微电网,实现多台变流器之间的协调控制以及不同运行模式的平滑切换是微电网运行控制的重点。文中首先以上虞交直流混合微电网示范工程为背景,详细介绍了该微电网系统的结构设计方案和各变流器设备的运行控制策略;其次,根据母线联络开关的通断状态,设计了4种交直流微电网典型运行模式,并重点阐述了包括计划性和非计划性切换在内的12种模式切换策略及实现逻辑。最后,结合现场实际运行结果对策略进行了验证。试验结果表明,文中所提的协调控制与模式切换策略能够实现系统均流、电压频率恢复和无缝切换等功能,有利于提高运行稳定性和供电可靠性,保证分布式电源的就地消纳。  相似文献   

12.
将交/直/交级联变换器、直流变换器、储能及其变换器通过公共直流母线组合,构成含两个交流端口、三个直流端口的电能路由器拓扑结构。分析典型运行模式并提出储能稳压的交直流混合电能路由器虚拟同步机协调控制策略:在交流单/双端并网模式下,通过储能稳定直流电压,两端交/直、直/交变换器通过虚拟同步机功率外环控制功率流向及大小;在交流双端离网模式下,通过储能稳定直流电压的同时,配合分布式电源为交直流负荷供电。所提策略无需模式切换,降低了控制复杂性,可实现电能路由器各模式下直流电压稳定、就地消纳分布式发电,保证交直流负荷持续稳定供电,还可实现双端并网时电网馈线间的柔性互联、电网故障时潮流转供以及双端离网下的自稳定运行,有效提高了低压配电网的供电可靠性。最后,通过仿真和实验验证了所提协调控制策略的正确性和有效性。  相似文献   

13.
针对并网型交直流混合微电网交流侧电压不平衡时会产生交流电流负序分量导致直流母线电压二倍频脉动的问题,提出了一种直流侧母线电压分数阶滑模控制以及交流侧负序电流抑制方法。首先,基于同步旋转坐标系下电网电压不平衡时交直流混合微电网互联接口变换器的数学模型,设计电压外环变结构滑模控制器。然后,根据电压不平衡时互联接口变换器的功率传输特性,提取交流侧三相电压的正序分量,得到交流侧负序电流抑制指令。接着,采用分数阶滑模趋近律设计内环电流解耦控制器,并利用李雅普诺夫函数进行稳定性校验。最后,基于Matlab/Simulink搭建的交直流混合微电网模型,验证了所提控制策略相较传统PI控制不仅抑制了三相电流的不平衡,而且将响应速度提升了近50%。  相似文献   

14.
交直流混合微电网接口变换器双向下垂控制   总被引:4,自引:0,他引:4  
交直流混合微电网中的接口变换器对于系统的稳定运行和功率的协调分配有着重要的作用。提出了一种接口变换器的双向下垂控制方法,分别采用变换器两侧的交流母线频率和直流母线电压对交流、直流微电网的电能需求程度进行衡量,确定变换器传输功率的大小与方向。控制架构中包括直流电压-有功功率和交流频率-有功功率两个下垂环节,并将二者输出之差作为接口变换器的功率参考值。同时,为了减缓下垂控制导致的电压或频率的跌落,在下垂控制基础上设计了恢复控制策略,以提高交直流混合微电网的电能质量和可靠性。这种双向下垂控制可以更精确地协调交流与直流微电网之间的能量传输,实现分布式能源的充分利用。利用DigSILENT软件搭建系统仿真模型,验证了控制方法的正确性。  相似文献   

15.
储能系统是微电网的重要组成部分,而保证储能系统的荷电状态(SOC)良好则是储能系统乃至整个微网安全高效运行的技术关键。文中提出了一种基于虚拟同步机(VSG)控制的交直流混合微网接口变流器与储能SOC协同控制策略,用以提高混合微网的频率、功率稳定性和系统内各储能SOC的分配合理性。首先对交直流微网两侧分布式电源的下垂控制方式及子网特性进行了分析,之后基于此特性提出了应用于接口变流器的VSG控制策略提高了系统频率功率稳定性,并且在功率分配环节中加入储能系统SOC控制策略,使各子网间储能SOC状态达到平衡,优化储能系统状态。最后利用Matlab/Simulink搭建了交直流混合微网模型对文中提出的算法进行了有效性验证。  相似文献   

16.
基于改进信赖域算法的孤岛交直流混合微电网潮流计算   总被引:1,自引:0,他引:1  
交直流混合微电网兼备交流微电网和直流微电网的优点,是未来具有发展前景的一种微电网形式。针对对等控制策略下的孤岛交直流混合微电网,考虑分布式电源和分布式储能装置不同的控制方式,基于交直流互联变流器标幺化方法的自治运行控制策略,兼顾交流子系统和直流子系统之间的双向功率交换,建立了对等控制策略下的孤岛交直流混合微电网潮流计算模型。为了提高现有潮流计算方法的收敛性,提出了信赖域半径收敛至0的改进信赖域算法求解上述模型。通过对12节点的孤岛交直流混合微电网的潮流计算,与BFGS(Broyden-Fletcher-Goldfarb-Shanno)信赖域算法及牛顿—拉夫逊法进行了对比,验证了所提算法的有效性和鲁棒性。  相似文献   

17.
刘迎澍  马川 《现代电力》2015,32(1):13-18
研究了一种基于交直流混合微网构架的电能路由器,分析了其工作模式,并设计了相应的控制策略。对集成了分布式电源和储能单元的电能路由器系统,在并网和孤岛两种工作模式下进行了仿真研究,验证了本方案的有效性和可靠性。此外,通过在逆变器和储能单元控制回路中引入功率前馈补偿验证了通信机制在电能路由系统中的重要性。研究结果表明,电能路由器可以有效整合各种分布式电源,是一种有前途的可再生能源利用方案。  相似文献   

18.
针对基于主从控制的交直流混合微电网,研究了孤岛模式下的功率平衡关系和互联变流器控制策略。主控制单元控制系统的功率波动,维持系统的稳定性,因此提出了主控制单元容占比的概念,来反映两侧微电网的运行状态;根据此概念,建立了交直流两侧的数学联系,设计了互联变流器的分区段控制策略,调节功率在微网间的流动,以实现两侧功率的相互支撑;为了避免互联变流器运行模式的频繁切换,设置了滞回比较环节,提高系统的稳定性。在PSCAD/EMTDC搭建了交直流混合微网仿真模型,结果表明,在孤岛模式下分区段控制策略能够实现对互联变流器的灵活控制,可准确调节交直流子网间的功率流动,实现系统的功率平衡以及各微网的电压和频率稳定。  相似文献   

19.
交直流混合微电网中的AC/DC双向变流器,对系统的稳定运行和功率的协调分配有着重要作用。为了使直流微电网部分作为一个电压功率可控的单元接入交流母线,提出了一种新的AC/DC双向变流器控制策略,用于平衡交直流微电网间的功率流动并提高系统联网和孤岛运行的稳定性及可控性。在联网模式时,新方法基于dq坐标系,通过直流侧电压外环给定内环直轴电流参考值,进而控制功率流动和联网运行。孤岛模式时,新方法以交直流母线的电压差值作为外环,控制功率在交直流母线间的流动,使其互为支撑,提高系统稳定性。与传统的并网控制不同,新方法  相似文献   

20.
为更好协调和控制交直流混合微网间能量传输,提出一种交直流混合微网能量路由器。建立所提出能量路由器数学模型,分析该能量路由器不同工作模态时级联整流级相量关系,并推导各混合运行模态限制性条件。针对该交直流混合微网能量路由器,提出相应控制策略,可实现H桥级联整流电路各级独立在AC-DC、DC-DC、DC-AC运行模式间无缝切换以达到交直流混合微网间能量的统一协调与管理。同时,减少了各微网间电力电子变换器的使用,提高各交直流微网间能量传输效率。仿真与实验结果验证了该交直流混合微网能量路由器电路拓扑的实用性及各运行模态时控制策略的正确性与有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号