首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
随着中国电网省地一体化和输配一体化的不断发展,电力系统计算的维度越来越高.状态估计作为电力系统态势感知中的基础环节,需要保证其实时性,而加权最小二乘法是电力系统运用最广泛的状态估计方法.为此,针对加权最小二乘法在牛顿迭代过程中矩阵乘法和线性方程组求解耗时较长的特点,根据Krylov子空间方法中共轭梯度法的思想,设计了一种基于预处理共轭梯度迭代法的电力系统状态估计算法.该方法采用不完全LU分解法对原始线性方程组进行预处理,并采用图形处理器(GPU)并行加速技术对矩阵乘法、线性方程预处理和共轭梯度法迭代进行加速.算例分析表明了文中方法加速效果明显,内存和显存占用较低,经过不完全LU分解法预处理的线性方程组迭代次数少,能够满足大规模电力系统状态估计的实时性要求.  相似文献   

2.
为实现电力系统负荷裕度的快速、准确计算,该文以直接法为基础,提出一种基于CPU-GPU混合架构的电力系统负荷裕度并行求解方法。首先,根据电压稳定临界点处潮流雅可比矩阵奇异,且零特征值对应的特征向量不为0的特点,构造一组表征电压稳定临界点性质的非线性方程组;然后,在采用牛顿法求解该非线性方程组过程中,为减少计算量和计算复杂度,将修正方程降阶变换为4组同系数矩阵的低维线性方程组;在此基础上,采用雅可比预处理器和不完全LU分解预处理器(incompleteLUdecomposition preconditioner,ILU)相结合的两阶段预处理方法对降维后的线性方程组的系数矩阵进行预处理,改善系数矩阵特征值分布,进而采用基于GPU加速的双共轭梯度稳定法(biconjugategradientstabilizedmethod,BICGSTAB)实现降维线性方程组求解的并行化,提高负荷裕度的计算效率;最后,通过多组测试系统算例对所提算法的准确性、有效性和快速性进行分析、验证。结果表明,文中所提算法可实现电力系统负荷裕度的快速、准确计算。  相似文献   

3.
经典不完全LU分解(ILU)预处理方法由于固有的前推回代模式而不利于并行化,为此提出了基于混合LU(HLU)分解预处理广义极小残余法(GMRES)的电力系统暂态稳定性并行计算方法。该方法在隐式联立求解方法的基础上,结合雅克比矩阵的对角加边形式,将雅可比矩阵采取分而治之的策略进行HLU分解预处理,再利用GMRES方法并行迭代求解。利用2个不同规模的算例系统,测试结果表明:HLU预处理较经典ILU可以减少一半的迭代次数,结合图形处理器(GPU)并行计算技术,基于HLU预处理GMRES的并行算法在系统规模达到上万节点时,可以获得10倍以上的加速比。因此,所提方法是一类收敛性好、并行度高,比较适合于GPU计算的并行算法。  相似文献   

4.
基于隐式梯形积分的交替求解法由于数值稳定性好,计算简单,广泛应用于电力系统暂态稳定计算,但其收敛性与计算效率之间存在权衡问题。该文分析交替求解法的迭代收敛过程,提出基于雅可比迭代的交替求解算法。该算法在求解非线性代数方程组时引入雅可比矩阵,提高算法迭代收敛性;利用非诚实牛顿法(very dishonest Newton method,VDHN)更新雅可比矩阵,减少计算复杂度。同时,该算法在求解线性代数方程组时,采用雅可比迭代法,提高计算效率。基于IEEE标准16机68节点系统,对比分析原始交替求解法、改进交替求解法、VDHN直接法和所提方法的正确性、迭代收敛过程及计算效率,证明所提方法的优越性。  相似文献   

5.
电力系统潮流计算中,对潮流雅可比矩阵进行预处理(preconditioning)的改进算法能提高算法的收敛性并能加快迭代收敛的速度;其中,预处理矩阵的选择是关键.通过应用Matlab对目前几种潮流计算预处理方法进行了仿真计算分析.仿真结果表明,P-Q分解法是目前各种预处理方法中最有效的一种预处理方法,且系统越大,效果越明显.  相似文献   

6.
潮流计算雅可比矩阵预处理方法的比较研究   总被引:6,自引:0,他引:6       下载免费PDF全文
电力系统潮流计算中,对潮流雅可比矩阵进行预处理(preconditioning)的改进算法能提高算法的收敛性并能加快迭代收敛的速度;其中,预处理矩阵的选择是关键。通过应用Matlab对目前几种潮流计算预处理方法进行了仿真计算分析。仿真结果表明,P-Q分解法是目前各种预处理方法中最有效的一种预处理方法,且系统越大,效果越明显。  相似文献   

7.
提出了一种基于m次重启的简化广义最小残差法(simpler generalized minimal residual algorithm of m times restart,SGMRES(m))的电力系统暂态稳定仿真新算法,即采用SGMRES(m)方法对暂态稳定仿真中形成的线性方程组进行求解,通过修正标准正交基的生成过程,使得m阶上Hessenberg矩阵成为上三角矩阵。这样,只要通过简单的上三角线性方程组的求解即可求得解的修正量,避免了求解广义最小残差法每次迭代中的最小二乘问题,从而有效地减少了计算量。为进一步加快计算速度,文中算法进一步结合了伪牛顿策略和不完全LU预处理技术。多个算例的计算结果表明,所提出方法是有效的。  相似文献   

8.
电力系统全过程动态仿真能够将机电暂态、中期和长期动态过程有机地统一起来进行数字仿真,仿真过程中需要多次求解大型稀疏线性方程组。该方程组由电力系统设备模型的微分—代数方程式差分后的代数方程和输电网络模型的代数方程形成,其快速求解算法是电力系统全过程动态仿真的难点之一。文中提出一种利用仿真中矩阵结构特点的分块快速直接求解算法,并开发实现了大型电力系统线性方程组稀疏求解器(ESS)。该算法首先将稀疏矩阵分为4个分块矩阵,然后将其中规模最大的对角块进一步细分为多个更小的对角分块矩阵,并利用部分小分块具有相同结构的特点进行矩阵LU符号分解和数值分解,最后根据分块矩阵进行前代和回代求解计算。与现有其他求解器进行的算例对比表明,ESS具有较为明显的整体求解速度优势,特别是在矩阵LU分解方面。  相似文献   

9.
为实现大规模电力系统潮流的准确、快速求解,以非精确牛顿法为基础,提出一种基于CPU-GPU异构平台的电力系统潮流并行计算方法。修正方程组的求解是牛拉法潮流计算中最为耗时的部分,提升修正方程组的求解效率可有效提升潮流计算效率。为此,根据雅可比矩阵的不对称不定性,采用稳定双正交共轭梯度(bi-conjugate gradient stabilized, BICGSTAB)法进行修正方程组的求解。进一步,为改善BICGSTAB法的收敛性,根据雅可比矩阵的稀疏性和类对角占优性,提出一种改进PPAT(Preconditioner with sparsity Pattern of AT, PPAT)预处理器和改进Jacobi预处理器相结合的两阶段预处理方法,并对雅可比矩阵进行预处理,提升BICGSTAB法的收敛性能。然后,将上述潮流算法移植到CPU-GPU异构平台,实现电力系统潮流的并行求解。最后,通过不同测试系统算例对所提方法进行验证、分析。结果表明,所提潮流并行计算方法可实现电力系统潮流的准确、快速求解。  相似文献   

10.
预条件处理CG法大规模电力系统潮流计算   总被引:7,自引:0,他引:7  
研究了预条件处理的CG(ConjugateGradient)法求解大规模电力系统潮流方程的问题。采用预处理CG法代替传统的LU直接法对高维稀疏潮流方程进行求解,详细比较各种预条件处理技术对CG法潮流方程求解的效果,提出一种新的节点优化排序的IncompleteCholesky预处理方法,实验分析证明它是CG法快速求解潮流的一种十分有效的预处理方法。对IEEE-30、IEEE-118和多个合成的大规模电力系统进行潮流计算,结果表明:这种预处理方法比其它预处理方法需要更少的迭代次数和浮点运算次数,对超大规模电力系统潮流问题也比传统LU直接法更具速度和存储优势。在电力系统互联程度不断增加使其潮流计算面临大规模甚至超大规模计算压力时,该方法能够成为传统方法的一个替代。  相似文献   

11.
采用了基于消去树理论的符号因子分解技术以及改进的LU数值分解算法来提高牛顿法潮流计算的效率。介绍了消去树理论,并采用符号因子分解技术确定雅可比矩阵的结构,然后采用稀疏向量法求取L阵的每行和U阵的每列。这种算法和求取L阵每列和U阵每行的传统LU分解方法相比,具有编程简单、计算效率高的优点。另外,雅可比矩阵结构对称以及编译器优化的经验也应用到文中,使得算法不仅占用内存较少,且效率较高。算法的优越性在实际系统 中得到了验证。  相似文献   

12.
Solution of a set of linear equations Ax=b is a recurrent problem in power system analysis. Because of computational dependencies, direct methods have proven to be of limited value in both parallel and highly vectorized computing environments. The preconditioned conjugate gradient method has been suggested as a better alternative to direct methods. The preconditioning step itself is not particularly well suited to parallel processing. Partitioned inverse representations of A are better suited to high performance computation. However, obtaining the partitioned inverse matrices can be expensive. This paper describes two techniques for preconditioning based on the partitioned inverses where the preconditioner matrix is obtained directly from an incomplete factorization without the need for additional numerical computation. Experiments indicate a 50% reduction in solution time in a parallel environment  相似文献   

13.
为满足输配电网一体化潮流计算精度和计算速度需求,提出了一种改进的牛顿法潮流计算方法。针对输配电网一体化牛顿法雅可比矩阵病态严重、收敛性能较差等问题,采用自适应Levenberg-Marquardt算法初始精度提升速度快的特征选取初值、不完全三角分解法预处理雅可比矩阵,有效地保证了数值稳定性,提高了牛顿法的收敛性能。针对输配电网一体化后规模庞大、计算效率低等问题,利用图形处理器并行加速技术对算法中的一些计算量密集的步骤,包括雅可比矩阵的生成、矩阵—向量运算等进行加速处理。算例测试表明,该算法能够显著提高大规模输配电网一体化潮流计算的速度和精度,对于多配电网区域、环网、分布式电源、病态系统等多种情形具有较强的普适性。  相似文献   

14.
为满足电力系统暂态稳定性实时分析计算的需求,将边界值类方法中的广义向后差分方法应用于暂态稳定性数值计算,提出了一种新的暂态稳定性快速数值计算方法。该方法利用广义向后差分方法对微分方程进行连续的时间差分离散,然后对离散后的非线性方程组采用牛顿法进行整体求解。利用雅克比矩阵所具有的带状结构特征,采用矩阵方程分裂—组合技巧,避免了对整体雅可比矩阵或多个分块子矩阵进行三角分解,从而提高了暂态稳定性数值计算的效率。对两个算例系统的测试结果表明:相对于经典的隐式梯形积分方法,所提出的算法在计算效率上具有明显的优势。  相似文献   

15.
基于道路树分层的大电网潮流并行算法及其GPU优化实现   总被引:3,自引:0,他引:3  
针对大规模电网分析及能量管理系统对快速潮流计算的需求,提出了一种适于图形处理器(GPU)的基于道路树分层的稀疏矩阵直接分解算法,并结合该算法在GPU上实现了基于牛顿-拉夫逊法的潮流计算.为提高基于GPU的计算效率,首先在GPU上实现了潮流方程式右端项生成、雅可比矩阵生成、LU分解以及前推回代求解,减少了CPU和GPU之间的数据传输时间.其次,针对GPU中寄存器-缓存-显存多级存储架构,改进数据存储方式,减少了读取延迟.进一步,考虑GPU线程组织特点,优化任务分配,增加了计算并行度.最后,对比基于CPU的电力系统分析综合程序(PSASP)潮流计算模块,进行了数值仿真测试.结果表明,随着节点数的增加,所提出的程序计算优势越来越显著,算例规模达到43 602个节点时可获得5.172倍的加速比,验证了算法的有效性和实用性.  相似文献   

16.
潮流计算是电力系统计算的基础,其核心是LU分解计算,因此电力系统潮流计算加速的关键在于LU分解加速。当前,基于中央处理器(CPU)的并行算法已经成熟,性能提升空间有限。图形处理器(GPU)作为协处理器,在科学计算方面具有强大的优越性,被广泛应用到电力系统潮流计算中。文中首先分析了GPU结构和并行运行架构,然后介绍了LU分解原理,并选择了合适的矩阵排序算法和稀疏矩阵存储模型,借助统一计算设备架构(CUDA)编程模型实现了基于GPU的单个LU分解和批量LU分解并行加速,最后在仿真设备上测试了5个不同的案例,对比分析其并行算法的加速效果。仿真测试结果表明,基于GPU的批量稀疏LU分解并行算法,平均可以获得25~50倍的加速效果。  相似文献   

17.
将 级 阶的辛Runnge-Kutta方法用于电力系统暂态稳定性计算,利用矩阵分裂技巧以及矩阵求逆运算的松弛方法,导出了一种新的暂态稳定性并行计算方法,具有较好的时间并行特性和超线性收敛性。利用IEEE 145节点系统,对导出的并行算法进行了仿真测试和评估。仿真测试结果表明,所提出的并行算法具有很好的收敛性,有效地解决了时间并行度与收敛性之间的矛盾,可以获得较高的加速比和很好的并行计算效率。  相似文献   

18.
The hybrid method of power system transient stability analysis, which combines the desirable features of both the time-domain simulation technique and the direct method of transient stability analysis, is presented. The hybrid method first computes the actual system trajectory using time-domain simulation, then evaluates the transient energy function in order to derive a stability index for fast derivation of transient stability limits. Proper criteria are proposed to stop the time-domain simulation of the system trajectory to reduce CPU time, once the status of the system has been identified. The method was successfully applied to three test systems varying in size from four generators to 50 generators. The method is shown to be a potential tool for online calculation of transient stability limits  相似文献   

19.
为提高N-1潮流计算的求解速度,提出基于子空间迭代法的快速N-1潮流计算方法。对初始潮流的雅克比矩阵进行不完全LU分解,得到固定的预条件子,应用结合了自适应GMRES(m)法的牛顿法求解N-1潮流。自适应GMRES(m)算法是GMRES算法的改进,能自动调节重启参数值,进一步提高算法收敛速度。对IEEE118、IEEE300、2383wp电力系统的仿真证明了基于子空间迭代法的快速N-1潮流计算方法的有效性。算例结果表明,自适应GMRES(m)算法能快速求解大规模线性方程组,适用于大规模系统的N-1潮流问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号