首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
谢德梅  周震涛 《电源技术》2007,31(10):816-818
采用化学沉淀法制备了不同覆钴量的铝掺杂氢氧化镍[覆Co(Ⅱ)-Ni/Al(OH)x]电极材料,并用X射线衍射光谱法(XRD)和粒度分布仪表征了其晶体结构和粒度分布,用恒流充放电实验测试了以其为正极活性物质组装成MH-Ni试验电池的充放电性能.结果表明:覆Co(Ⅱ)-Ni/Al(OH)x样品具有α-Ni(OH)2型的晶体结构,覆钻量为2%~5%的Ni/Al(OH),具有最佳的充放电性能和较高的放电容量保持率.  相似文献   

2.
Al取代α-Ni(OH)2具有高的放电比容量和质子扩散系数,成为近几年的研究热点。从Al取代α-Ni(OH)2的稳定化机理、制备方法和掺杂改性等方面综述了其研究进展,最后展望了Al取代α-Ni(OH)2的应用前景。  相似文献   

3.
为了降低二次碱性电池正极氢氧化镍的成本,采用球磨法制备出Mn代氢氧化镍[Ni1-xMnx(OH)2,x=0~0.3].×射线衍射测试证实其为β-Ni(OH)2的结构.恒电流充放电试验表明,Ni1-xMnx(OH)2电极的放电电位和容量随Mn取代量的增加而逐渐降低;而Zn部分取代镍[Ni0.8Mn02-yZny(OH)2,y =0~0.075]能够提高电极的放电电位.与市售的球形氢氧化镍相比,球磨法制备的Ni0.8Mn0.15Zn0.05(OH)2电极在循环伏安曲线中出现Ni-Mn-O复合物的还原峰,且峰电位低于NiOOH的还原峰电位,两种电极的0.2 C容量和循环性能接近,但后者的大电流性能更佳.  相似文献   

4.
水热法制备了铝取代纳米花瓣状Ni(OH)_2组装体,讨论了铝掺杂量对产物形貌、结构和电化学性能的影响。结果表明:不同铝取代量制备的样品都为α混合相花瓣微球。其在强碱中可稳定存在,铝的掺入提高了放电容量,不同倍率下掺杂样品的放电容量都比未掺杂样品放电容量高,其中9mol%Al取代氢氧化镍具有最优电化学性能,1.0C放电容量(249.8mAh/g)比未掺杂纳米氢氧化镍(182.8mAh/g)提高了36.6%。1.0C和3.0C循环20周后,容量分别衰减0.5mAh/g和6mAh/g,具有良好的循环性能。  相似文献   

5.
在不同nAlnNi(摩尔比)条件下,采用化学共沉淀法合成制备了掺Al α-Ni(OH)2,对其进行了X射线衍射表征和扫描电镜、比表面积及电性能等分析测试.结果表明,掺Al α-Ni(OH)2的晶格参数(d003)、比表面积、粒径均随着nAlnNi的增加而减小;nAlnNi增至20%时,制品呈现出单一的α-Ni(OH)2结构;晶格参数(d003)小、结晶规整有序的α-Ni(OH)2具有很高的放电容量(0.2 C放电容量为350 mAh·g-1)及稳定的电化学循环性能.  相似文献   

6.
谢德梅  周震涛 《电池》2007,37(2):89-91
采用化学沉淀法制备了覆Co(Ⅱ)-Ni/Al(OH)x电极材料,并用XRD、SEM和粒度分布仪研究了材料的晶体结构、表观形貌和粒度分布,以恒流充放电实验测试了以其为正极活性物质组装的MH/Ni试验电池的充放电性能.结果表明:覆Co(Ⅱ)-Ni/Al(OH)x样品具有α-Ni(OH)2型晶体结构,采用覆Co(Ⅱ)-Ni/Al(OH)x电极材料制备的MH/Ni试验电池的最高放电比容量为424.53 mAh/g,600次循环后的放电比容量(395.24 mAh/g)仍为其最高放电比容量的93.1%.  相似文献   

7.
采用微乳液法制备Al掺杂纳米Ni(OH)2粉体,并对其结构及电化学性能进行X射线衍射光谱法(XRD)、透射电子显微镜法(TEM)、选区电子衍射(SAED)、合金表面元素组成分布(EDAX)分析及充放电性能测试。研究结果表明:随着Al掺杂含量的提高,纳米Ni(OH)2粉体由β-Ni(OH)2逐步转变为α-Ni(OH)2,其形貌由细针状逐渐转变为球形颗粒后向不规则块片状转变。随着Al含量增加,样品的放电比容量先下降后上升再下降。当Al含量为15%时,所制备的粉体为球形纳米α-Ni(OH)2,其放电比容量高达302.25 mAh/g,且放电平台高,充电电压较低。  相似文献   

8.
掺杂α-Ni(OH)2制备及其电化学性能研究   总被引:1,自引:0,他引:1  
α-Ni(OH)2具有较高的比容量。采用掺杂技术制备得到的样品具有与α-Ni(OH)2相同的结构和特征,放电比容量达到315m Ah/g,纯N i(OH)2比容量达到420m Ah/g,且所得样品以0.3C循环100次容量保持92%左右,适宜于作为碱性蓄电池的活性物质。  相似文献   

9.
氢氧化镍电极材料研究进展   总被引:1,自引:0,他引:1  
徐艳辉  张倩  王晓琳 《电池工业》2009,14(6):416-420
氢氧化镍电极材料应用广泛,主要有两种晶型结构,即β-Ni(OH)2和α-Ni(OH)2,二者各有优缺点。从工艺和材料性能改进的角度综述了其作为碱性二次电池正极材料的研究进展情况。  相似文献   

10.
以硫酸镍和NaOH为原料,采用水热法合成氢氧化镍纳米带。利用X射线衍射(XRD)和扫描电子显微镜(SEM)研究了β-Ni(OH)2纳米带形态演化过程。利用循环伏安和恒流充放电测试技术研究了不同形貌的β-Ni(OH)2的电化学性能。研究结果表明:在6 mol/L的KOH水溶液中,放电倍率为0.2 C时,β-Ni(OH)2纳米带电极比容量为244.7 m Ah/g,且经过500次循环后容量无衰减,表现出良好的电化学性能。  相似文献   

11.
不同相结构NiOOH的制备及其物理化学性能   总被引:1,自引:0,他引:1  
吴芳芳  王建明  陈惠  张鉴清 《电源技术》2004,28(11):700-703
为了提高碱性电池的大功率放电性能,采用次氯酸钠氧化法制备了碱性电池正极活性材料NiOOH,并应用XRD、IR、TG以及恒流充放电等方法对样品的物理性质和电化学性能进行了表征。XRD和IR的测试结果显示,以b-Ni(OH)2和a-Ni(OH)2为前驱物,采用次氯酸钠氧化法制备的样品分别为b-NiOOH和g-NiOOH。热重分析结果说明,g-NiOOH具有较高的热分解温度,其热稳定性高于b-NiOOH。电化学测试则表明,NiOOH样品表现出优越的大功率放电性能,其放电曲线平坦,大电流放电容量相对较高,其放电电位也远高于MnO2样品。b-NiOOH和g-NiOOH均具有良好的可充性和电化学循环稳定性,但b-NiOOH的首次放电性能优于g-NiOOH。NiOOH样品适于用作高功率一次碱性电池和高性能碱性镍基蓄电池的正极活性材料。  相似文献   

12.
纳米结构氢氧化镍粉末对镍电极的改性作用   总被引:2,自引:0,他引:2  
宋全生  李泱瑶  唐致远  S.L.L.CHAN 《电源技术》2004,28(3):170-172,176
采用水溶液化学沉淀法直接合成了具有纳米结构特征的氢氧化镍粉末,利用扫描电子显微镜(SEM)、X射线衍射(XRD)、BET比表面积等方法对其结构特征进行了表征。将纳米结构氢氧化镍粉末以一定比例添加到商用球形氢氧化镍粉末中作为活性材料制备发泡式镍电极,采用恒电流充放电测试、循环伏安(CV)及交流阻抗分析(EIS)等方法对镍电极的电化学性能进行了研究。结果表明,纳米结构氢氧化镍粉末的添加可以使镍电极在充电效率、放电比容量、活性物质利用率、放电电压、抗膨胀能力及高速率放电性能等方面得到明显改善和提高。添加有纳米结构粉末的镍电极具有更高的反应活性及更小的电化学反应阻抗,充电时氧气析出电位也比较高,因而表现出优良的电化学性能。  相似文献   

13.
镍粉对Ni(OH)2电极电化学行为的影响   总被引:1,自引:0,他引:1  
利用恒电流充放电、循环伏安法研究了过量镍粉对Ni(OH)2电极电化学行为的影响,并用X射线衍射分析了放电后镍粉结构的变化。结果表明:电极中的镍粉在碱性电解液中会氧化成活性物质β—Ni(OH)2,从而对放电容量作出贡献,同时因氧化使导电性降低而影响Ni(OH)2的放电效率。利用镍粉作空白试验对照,将电极在第4~6周期的放电容量扣除镍粉的贡献可尽量准确地测定Ni(OH)2的放电容量。  相似文献   

14.
氧化镍的热分解法制备及电化学电容器特性   总被引:7,自引:1,他引:7  
采用水溶液化学沉淀法合成了b-Ni(OH)2粉末,利用热重(TG)、差热重(DTG)及红外光谱(IR)等方法对Ni(OH)2的结构和热分解特性进行了研究。以Ni(OH)2粉末作为前驱体,通过控制其在一定温度下热分解的方法制备了NiO粉末。采用发泡镍作为电极基体,以合成的NiO粉末作为活性物质制作成多孔氧化镍电极,利用循环伏安(CV)及恒电流充放电测试对氧化镍电极在碱性介质中的电化学性能进行了研究和分析。结果表明,NiO粉末材料具有典型的法拉第准电容特性,且其充放电反应的可逆性良好,适合于作为碱性电化学电容器的电极材料。  相似文献   

15.
通过络合沉淀法制备纳米二次结构的球形氢氧化镍粉体。X射线衍射光谱法(XRD)和扫描电子显微镜法(SEM)分析表明产物为纳米氢氧化镍薄片构成的粒径为8~20μm之间的球形β型氢氧化镍。实验发现,样品的结构和密度主要受pH值和氨水浓度的支配,11.0≤pH≤11.7时,氨水浓度对样品密度起着决定性作用。通过调节合适的pH条件,可以控制氢氧化镍薄片的厚度和堆积密度从而使样品的振实密度在1.90~2.10 g/cm3之间可控。恒流充放电测试表明,样品在2 000 mA/g高电流密度下具有良好的快速充放电性能,其放电比容量在高压段高达219~277 mAh/g。  相似文献   

16.
介绍了以β-Ni(OH)2、CoSO4、MnSO4和LiOH·H2O为原料,在β-Ni(OH)2表面同时包覆Co、Mn合成锂离子电池正极材料LiNi09Mn0.03Co0.07O2的方法。XRD测试结果表明:样品为α-NaFeO2结构;SEM和EDS结果表明:Co、Mn均包覆在β-Ni(OH)2表面上,且包覆均匀、致密。合成的材料在电流密度为30mA/g下,第二次循环放电容量为194mAh/g,50次循环后容量仍保持为189mAh/g,材料循环性能稳定。  相似文献   

17.
纳米复合氢氧化镍电极研究   总被引:18,自引:1,他引:17  
张红兵  浦坦  李道火 《电源技术》2001,25(Z1):146-147
纳米氢氧化镍材料是一种高效的镍电极材料 ,纳米级镍电极的制备方法对镍电极电化学性能的影响很大。研究结果表明 :分散处理的纳米氢氧化镍颗粒制备的镍电极在容量与放电平台方面高于未处理的电极 ;纳米复合镍电极的电化学性能优于纳米镍电极。分散处理的纳米氢氧化镍颗粒组装而成的纳米复合镍电极电化学性能超过了常规球镍电极。纳米颗粒团聚的减轻与纳米颗粒的流动性 ,使纳米复合电极的导电性能与质子传导性能明显改善是分散处理纳米复合镍电极具有优良电化学性能的原因。  相似文献   

18.
通过共沉淀法制备了Ni0.35Mn0.65(OH)2,并与碳酸锂混合,经高温煅烧得到层状Li1.3Ni0.35Mn0.65O2.3。通过XRD(X射线衍射)、SEM(扫描电子显微镜)和电化学性能测试对所得样品进行了表征。考察了烧结温度和烧结时间对材料的结构和电化学性能的影响。结果表明,在优化条件下合成的正极材料具有很好的α-NaFeO2型层状结构,粒度分布均匀,形貌呈球形。以0.1 C的电流在2.0~4.6 V充放电时,放电比容量达180~220 mAh/g,同时具有良好的循环可逆性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号